Laman

Sabtu, 27 September 2014

Poros Transmisi


 


1. Pengertian 
Poros merupakan salah satu bagian terpenting dalam setiap mesin yang berfungsi untuk meeneruskan daya dan putaran . Poros adalah suatu bagian stasioner yang berputar,biasanya berpenampang bulat ,dimana terpasang elemen-elemen seperti : kopling, roda gigi ,pully ,roda gila ,engkol sproket ,dll . 

2. Macam –Macam Poros 
               Menurut pembebananya poros diklasifikasikan menjadi  :
a. poros transmisi
b. poros spindle
c. poros gandar 
            Dalam perancanaan kopling ini dipilih jenis ‘poros transmisi ‘ .poros ini mendapat beban puntir murni atau gabungan beban puntir dan lentur.Daya ditransmisikan kepada poros ini melalui kopling ,roda gigi ,pully ,dll.
Dalam perencanaan poros transimisi ini, perlu diperhatikan hal-hal sebagai berikut:
Kekuatan poros
Suatu poros transmisi harus dapat menahan beban seperti puntiran,lenturan, tarikan dan tekanan. Oleh karena itu, poros harus dibuat dari bahan pilihan yang kuat dan tahan terhadap beban-beban tersebut.
Kekakuan poros 
Walaupun sebuah poros mempunyai kekuatan yang cukup tinggi  tetapi jika lenturan atau defleksi puntirnya terlalu besar, akan mengakibatkan terjadinya getaran dan suara. Oleh karena itu disamping kekuatan poros, kekakuannya juga harus dipertimbangkan sesuai dengan jenis mesin yang dilayani.
Putaran Kritis
Suatu mesin bila putarannya dinaikkan, maka pada harga putaran tertentu akan terjadi getaran yang sangat besar dan disebut putaran kritis. Putaran ini harus dihindari dengan membuat putaran kerja lebih rendah dari putaran kritisnya.
Bahan Poros 
Bahan poros transmisi biasa dibuat dari bahan yang ditarik dingin dan difinishing  seperti baja karbon yang dioksidasikan dengan ferra silicon dan dicor. Pengerjaan dingin membuat poros menjadi keras dan kekuatannya menjadi besar.

Penentuan Daya Perencanaan
Poros yang akan dirancang adalah poros transmisi yang digunakan untuk mentransmisikan daya dan putaran, yang diperoleh dari brosur pada lampiran 1 adalah sebesar:

N = 107 PS 
   = 107 HP
  = 107 x  0,735 kW
  = 78,645 kW
n = 5400 rpm

Penentuan daya rencana (Pd) diperoleh dari rumus:

Pd = fc.N                                                                                  
      
Dimana: Pd = daya rencana ( kW )  
fc =  factor koreksi
N = daya nominal keluaran motor penggerak ( kW )


Untuk perancangan poros ini diambil daya maksimum sebagi daya rencana dengan faktor koreksi sebesar 
fc = 1,1. Harga ini diambil dengan pertimbangan bahwa daya yang direncanakan akan lebih besar dari daya maksimum sehingga poros yang akan direncanakan semakin aman terhadap kegagalan akibat momen puntir yang terlalu besar. 
Maka besarnya daya rencana adalah:
 Pd = 1,1 x 78,645 kW
 Pd = 86,5095 kW

Dengan adanya daya dan putaran, maka poros akan mendapat beban berupa momen puntir. Oleh karena itu dalam penentuan ukuran-ukuran utama poros akan dihitung berdasarkan beban puntir serta kemungkinan-kemungkinan kejutan/tumbukan dalam pembebanan, seperti pada saat motor mulai berjalan.
Besarnya momen puntir uang dikerjakan pada poros dapat dihitung :
Mp = 9,74 .105                                                         (lit.1 Hal 7)
Dimana: Mp = momen puntir ( kg.mm)
Pd  = daya rencana ( kW )
n    = putaran ( rpm )

Untuk daya rencana Pd = 78,645 kW dan putaran  n = 6000 rpm, maka momen puntirnya adalah:
Mp = 9,74 .105  x  
Mp = 14043,3755 kg.mm

Crank Shaft (Poros Engkol)


                 Fungsi poros engkol (Crank Shaft) adalah mengubah gerak naik turun atau lurus piston menjadi gerak putar. Poros engkol adalah salah satu komponen penting suatu mesin, selain merubah gerak bolak balik piston menjadi gerak putar, poros engkol juga menerima beban dan tekanan yang sangat tinggi dari hasil pembakaran oleh piston untuk itu poros engkol haruslah terbuat dari bahan yang sangat kuat dan tahan lama. Poros engkol atau crankshaft terbuat dari baja karbon tinggi. Poros engkol terletak diantara blok silinder dan bak oli yang terhubung langsung dengan roda gila dan batang torak. Putaran dari poros engkol diteruskan ke roda gila dan selanjutnya kopling yang akan memegang kendali, apakah putaran akan di sambungkan atau di putuskan ke transmisi.
Poros engkol terbuat dari baja karbon, proses pembuatan melalui pengecoran. Bagian poros engkol antara laian: Pena engkol (Crank pin), yaitu bagian yang berhubungan dengan batang piston, terdapat dua tipe pena engkol yaitu:
1. tipe terpisah untuk motor satu silinder
2. tipe menyatu untuk motor multi silinder.

                Pada pena engkol tipe terpisah antara pena engkol dengan batang piston dipasang bearing tipe jarum (needle bearing), sedangan pada pena engkol tipe menyatu menggunakan metal (insert type bearing). Jurnal (crank journal), yaitu bagian yang berhubungan dengan bak engkol (crank case).
Pada tipe pena engkol terpisah crank journal ditumpu oleh bearing (ball bearing), sedangkan tipe pena engkol menyatu ditumpu dengan metal (insert type bearing). Bobot balance (counterbalance weight), merupakan bagian yang berfungsi untuk menyeimbangkan fluktuasi gaya yang yang bekerja pada poros engkol, selama poros engkol putaran atau mesin hidup. Penyebab getaran yang terjadi pada mesin terutama disebabkan gerak naik turun piston. Saat di TMA kecepatan piston nol, demikian pula saat di TMA, kecepatan maksimal piston berada sekitar pertengahan langkah. Perubahan kecepatan piston menyebabkan adanya percepatan dan perlambatan, adanya percepatan dan perlambatan menyebabkan gaya inersia dengan arah yang bervariasi.
Bobot balance ada dua tipe, yaitu:
1. Intergret type counterbalance weight: pada tipe ini bobot penyeimbang menyatu dengan pipi engkol, sehingga ukuran pipi engkol menjadi lebih besar.
2. Separated type counterbalance weight: bobot penyeimbang pada pipi engkol dikurangi , 


               kemudian dibuat bobot penyeimbang tersendiri. Bila piston gergerak ke atas akan menghasilkan gaya inersia sebesar 100%, gerakan ini akan dibalance oleh gaya inersia poros engkol sebesar 50%, sisanya akan dibalance oleh balancer masing-masing 25 %, sehingga total dari balance dari gaya inersia ke bawah sebesar 100%. Demikian pula untuk gerakan piston turun. Dengan demikian getaran yang timbul akibat gaya inersia oleh gerakan piston saat motor beroperasi dapat direduksi oleh bobot balance, sehingga getaran mesin lebih halus. Hal-hal yang harus diperhatikan dalam menangani Separated type counterbalance weight adalah: Periksa kondisi permukaan bidang gesek balance dari keausan Periksa bearing poros bobot balance dari keausan Periksa bidang kontak gigi dari keausan Saat memasang balance pastikan tanda pemasangan tepat. Kesalahan saat pemasangan menyebabkan getaran mesin tinggi.
Bentuk dan konstruksi poros engkol ditentukan oleh banyaknya silinder dan urutan pengapian atau firing order ( FO ) dan faktor yang harus diperhatikan adalah getaran akibat proses pembakaran di dalam silinder. komponen CrankShaft atau poros Engkol : crank pin crank journal crank arm crankshaft bearing / lager balance weight lubang oli.

komponen CrankShaft atau poros Engkol :

  • crank pin
  • crank journal
  • crank arm
  • crankshaft bearing / lager
  • balance weight
  • lubang oli
1196796_crankshaft

Bantalan ( Bearing )


Pengertian dan klasifikasi pada bearing
Bantalan merupakan salah satu bagian dari elemen mesin yang memegang peranan cukup penting karena fungsi dari bantalan yaitu untuk menumpu sebuah poros agar poros dapat berputar tanpa mengalami gesekan yang berlebihan. Bantalan harus cukup kuat untuk memungkinkan poros serta elemen mesin lainnya bekerja dengan baik. Pada umumya bantalan dapat diklasifikasikan menjadi 2 bagian yaitu.
a. Berdasarkan gerakan bantalan terhadap poros 
• Bantalan luncur
Pada bantalan ini terjadi gesekan luncur antara poros dan bantalan karena permukaan poros ditumpu oleh permukaan bantalan dengan perantaraan lapisan pelumas.

• Bantalan gelinding
Pada bantalan ini terjadi gesekan gelinding antara bagian yang berputar dengan yang diam melalui elemen gelinding seperti bola, rol, dan rol bulat.

b. Berdasarkan arah beban terhadap poros
• Bantalan radial
Arah beban yang ditumpu bantalan ini adalah tegak lurus sumbu.

• Bantalan aksial
Arah beban bantalan ini sejajar dengan sumbu poros.

• Bantalan gelinding khusus
Bantalan ini dapat menumpu beban yang arahnya sejajar dan tegak lurus sumbu poros.
Meskipun bantalan gelinding menguntungkan, Banyak konsumen memilih bantalan luncur dalam hal tertentu, contohnya bila kebisingan bantalan menggangu, pada kejutan yang kuat dalam putaran bebas.


Pembacaan nomor nominal pada bantalan gelinding.
Dalam praktek, bantalan gelinding standart dipilih dari katalog bantalan. Ukuran utama bantalan adalah
- Diameter lubang
- Diameter luar
- lebar
- Lengkungan sudut
Nomor nominal bantalan gelinding terdiri dari nomor dasar dan nomor pelengkap. Nomor dasar yang ada merupakan lambang jenis, lambang ukuran(lambang lebar, diameter luar). Nomor diameter lubang dan lambang sudut kontak penulisannya bervariasi tergantung produsen bearing yang ada.
Bagian Nomor nominal
A B C D
A menyatakan jenis dari bantalan yang ada.
Jika A berharga
0 maka hal tersebut menunjukkan jenis Angular contact ball bearings, double row.
1 maka hal tersebut menunjukkan jenis Self-aligning ball bearing.
2 maka hal tersebut menunjukkan jenis spherical roller bearings and spherical roller thrust bearings.
3 maka hal tersebut menunjukkan jenis taper roller bearings.
4 maka hal tersebut menunjukkan jenis Deep groove ball bearings, double row.
5 maka hal tersebut menunjukkan jenis thrust ball bearings.
6 maka hal tersebut menunjukkan jenis Deep groove ball bearings, single row.
7 maka hal tersebut menunjukkan jenis Angular contact ball bearings, single row.
8 maka hal tersebut menunjukkan jenis cylindrical roller thrust bearings.
B menyatakan lambang diameter luar.
Jika B berharga 0 dan 1 menyatakan penggunaan untuk beban yang sangat ringan.
Jika B berharga 2 menyatakan penggunaan untuk beban yang ringan.
Jika B berharga 3 menyatakan penggunaan untuk beban yang sedang.
Jika B berharga 4 menyatakan penggunaan untuk beban yang berat.
C dan D menyatakan lambang diameter dalam
Untuk bearing yang berdiameter 20 - 500 mm, kalikanlah 2 angka lambang tersebut untuk mendapatkan diameter lubang sesungguhnya dalam mm. Nomor tersebut biasanya bertingkat dengan kenaikan 5 mm tiap tingkatnya.

Penyebab-penyebab kerusakan pada bearing:
1. Kesalahan bahan 
o faktor produsen: yaitu retaknya bantalan setelah produksi baik retak halus maupun berat, kesalahan toleransi, kesalahan celah bantalan.
o faktor konsumen: yaitu kurangnya pengetahuan tentang karakteristik pada bearing.

2. Penggunaan bearing melewati batas waktu penggunaannya (tidak sesuai dengan petunjuk buku fabrikasi pembuatan bearing).

3. Pemilihan jenis bearing dan pelumasannya yang tidak sesuai dengan buku petunjuk dan keadaan lapangan (real).

4. Pemasangan bearing pada poros yang tidak hati-hati dan tidak sesuai standart yang ditentukan. 
Kesalahan pada saat pemasangan, diantaranya:
o Pemasangan yang terlalu longgar, akibatnya cincin dalam atau cincin luar yang berputar yang menimbulkan gesekan dengan housing/poros.
o Pemasangan yang terlalu erat, akibatnya ventilasi atau celah yang kurang sehingga pada saat berputar suhu bantalan akan cepat meningkat dan terjadi konsentrasi tegangan yang lebih.
o Terjadi pembenjolan pada jalur jalan atau pada roll sehingga bantalan saat berputar akan tersendat-sendat.

5. Terjadi misalignment, dimana kedudukan poros pompa dan penggeraknya tidak lurus, bearing akan mengalami vibrasi tinggi. Pemasangan yang tidak sejajar tersebut akan menimbulkan guncangan pada saat berputar yang dapat merusak bearing. Kemiringan dalam pemasangan bearing juga menjadi faktor kerusakan bearing, karena bearing tidak menumpu poros dengan tidak baik, sehingga timbul getaran yang dapat merusak komponen tersebut.

6. Karena terjadi unbalance (tidak imbang), seperti pada impeller, dimana bagian-bagian pada impeller tersebut tidak balance (salah satu titik bagian impeller memiliki berat yang tidak seimbang). Sehingga ketika berputar, mengakibatkan putaran mengalami perubahan gaya disalah satu titik putaran (lebih terasa ketika putaran tinggi), sehingga berpengaruh pula pada putaran bearing pada poros. Unbalance bisa terjadi pula pada poros, dan pengaruhnya pun sama, yaitu bisa membuat vibrasi yang tinggi dan merusak komponen.

7. Bearing kurang minyak pelumasan, karena bocor atau minyak pelumas terkontaminasi benda asing dari bocoran seal gland yang mempengaruhi daya pelumasan pada minyak tersebut.

Proses pemasangan bearing.
- Proses balancing. Pemasangan bearing pada komponen mesin, komponen tersebut pertama-tama harus benar-benar balance agar bearing dapat bertahan dengan baik.
- Alignment (pengaturan sumbu poros pada mesin harus benar-benar sejajar).
- Proses pemberian beban. Pemberian beban ini harus sesuai dengan jenis bearing yang digunakan apakah itu beban radial atau beban aksial.
- Pengaturan posisi bearing pada poros.
- Clearance bearing. Metode pemasangan dan peralatan yang digunakan.
- Toleransi dan ketepatan yang diperlukan. Pada saat pemasangan bearing pada poros, maka toleransi poros pada proses pembubutan harus diperhatikan karena hal tersebut mempengaruhi keadaan bearing.
 
Gambar 1 : Pemasangan dan pelepasan bearing
Sumber: www.vista-bearing.com

Cara mengatasi kerusakan pada bearing:
1. Melakukan penggantian bearing sesuai umur waktu kerja yang telah ditentukan.
2. Mengganti bearing yang sesuai dengan klasifikasi kerja pompa tersebut.
3. Melakukan pemasangan bearing dengan hati-hati sesuai standar yang telah ditentukan.
4. Melakukan alignment pada poros pompa dan penggeraknya.
5. Melakukan tes balancing pada poros dan impeller.
6. Memasang deflektor pada poros dan pemasangan rubber seal pada rumah bantalan dan perbaikan pada seal gland, untuk mengantisipasi kebocoran.

Teknik Dasar Mesin

 

Teknik otomotif adalah salah satu cabang ilmu teknik mesin yang mempelajari tentang bagaimana merancang, membuat dan mengembangkan alat-alat transportasi darat yang menggunakan mesin, terutama sepeda motor, mobil, bis dan truk. Teknik otomotif menggabungkan elemen-elemen pengetahuan mekanika, listrik, elektronik, keselamatan dan lingkungan serta matematika, fisika, kimia, biologi dan manajemen.
Cabang-cabang dari teknik otomotif meliputi :
  • Perencanaan (product atau design)
  • Pengembangan (development)
  • Produksi (manufacturing)
  • Perawatan (maintenance)
Di Indonesia saat ini cabang yang sangat berkembang adalah perawatan dan umumnya mengenai perawatan mobil dan sepeda motor.



Sistem dalam otomotif


Dalam teknik otomotif, menguasai sistem-sistem yang ada alat-alat transportasi darat merupakan suatu keharusan. Sistem tersebut terdiri beberapa sistem utama dan puluhan subsistem. Sistem tersebut dapat dikelompokkan :
  1. mesin (engine)
    • mesin pembakaran dalam (internal combustion engine).
    • sistem bahan bakar (fuel system).
      • tangki bahan bakar.
      • pompa bahan bakar
      • karburator atau sistem injeksi bahan bakar.
    • sistem pengapian (ignition system).
    • sistem pemasukan udara dalam ruang bakar (intake system).
    • sistem pembuangan udara hasil pembakaran (exhaust system).
    • sistem pendinginan (cooling system).
    • sistem pelumasan (lubricating system).
    • sistem keseimbangan roda (spooring balancing)
  2. Pemindah daya (power train).
    • sistem transmisi (transmission system).
    • rangkaian penggerak (drive train).
      • Transfer case (untuk penggerak 4 roda)
      • Penggerak akhir (final drive)
      • roda (wheel)
  3. sistem kemudi (steering system).
  4. sistem suspensi (suspension system).
  5. sistem rem (brake system).
  6. sistem kelistrikan (electric system)


Dasar dasar otomotif


Seperti kita ketahui bahwa suatu kendaraan membutuhkan suatu tenaga yang memungkinkan dapat bergerak dan mengatasi keadaan jalan, beban, angin dan sebagainya. Sumber tenaga atau energi dihasilkan dari sebuah mesin yang merubah tenaga listrik, panas, gerak, angin atau sebagainya menjadi tenaga gerak (mechanical energi).
 
1. Pengertian Mesin (Engine)
Engine atau mesin merupakan sesuatu untuk merubah tenaga panas yang dihasilkan dari proses pembakaran bahan bakar menjadi tenaga gerak yang nantinya akan memutarkan roda-roda sehingga memungkinkah mobil bisa bergerak. Mesin yang digunakan oleh mobil haruslah kompak, ringan dan mudah ditempatkan pada ruangan yang terbatas. Selain itu mesin harus dapat menghasilkan kecepatan tinggi dan tenaga yang besar. Mesin juga harus mudah dalam pengoperasiannya dan dapat meredam bunyi dan getaran. Oleh karena itu sekarang banyak menggunakan mesin dengan berbahan bakar bensin dan solar. Sekarang ada mobil tenaga listrik.
 
2. Komponen-Komponen Mesin Bensin dan Fungsinya
Mesin bensin terdiri dari mesin itu sendiri dan komponen – komponen lain sebagai kelengkapannya. Komponen Utama Mesin ialah : blok silinder dan kepala selinder, torak dan batang torak, poros roda dan roda penerus mekanisme katup, dan bak oli (carter)
Sedangkan yang termasuk Kelengkapan Mesin ialah sistem pelumasan, sistem pendinginan, sistem pemasukan dan pembuangan, sistem bahan bakar dan sistem kelistrikan.
Semua komponen – komponen itu saling mendukung satu sama lainnya.
 
  • Blok Silinder dan Kepala Silinder
Blok Silinder (Cyilinder Block) merupaka inti dari sebuah mesin, dirancang sedemikian rupa untuk tempat berdiamnya komponen –komponen mesin dan kelengkapannya. Bagian dalam terdapat lubang-lubah sebagai ruang bergerak naik turunnya torak sebagai ruang bakar yang diselimuti oleh mantel pendingin (water jacket) sebagai sistem pendingin.
  • Kepala Silinder (Cylinder head) 
merupakan tutup dari blok silinder dan mekanime katup.kepala silinder dibagian atas blok silinde. kepala silinder harus tahan terhadap temperatur dan tekanan yang tinggi selama mesin bekerja. oleh sebab itu, umumnya kepala silinder dibuat dari besi tuang, dan di era yang modern ini kepala silinder juga dibuat dari paduan alumunium dengan tujuan memilki kemampuan pendinginan lebih besar dari besituang.
  • gasket kepala silinder
Antara Blok silinder dengan kepala silinder dipasang Gasket untuk mencegah kebocoran gas pembakaran, air pendingin dan oli.

  • Torak (Piston)
Fungsinya untuk meneruskan tenaga hasil pembakaran bahan bakar untuk memutarkan poros engkol melalui batang torak yang nantiya poros engkol dapat memutarkan flywheel. Selain itu juga piston sebagai perubah tenaga panas menjadi tenaga gerak yang dibutuhkan.
Pada piston terdapat pegas atau cincin yang umumnya ada 3 buah cincin.2 pegas cincin kompresi dan 1 pegas cincin oli. Pegas kompresi (compression ring) berfungsi untuk mencegah kebocoran campuran bahan bakar udara dan gas dari ruang bakar ke bak engkol. Sehingga pegas kompresi berada di dekat ruang bakar atau berada di atasnya pegas cincin oli. Pegas Oli (Oil ring) diperlukan untuk membentuk lapisan oli di dinding silinder yang nantinya oli itu sebagai pelumas akibat gesekan antara torak dengan dinding silinder.
 
  • Poros engkol (Crankshaft)
Tenaga yang dibutuhkan oleh flywheel adalah tenaga putar. Karena yang dihasilkan Torak sebagai penerima pertama tenaga adalah tenaga turun naik torak maka dibuatlah poros engkol sebagai perubah gaya turun naik torak menjadi gaya putar.
 
  • Roda Penerus (Flywheel)
Sesuai namanya maka roda penerus fungsi utamanya adalah sebagai penerus tenaga putar dari poros engkol ke roda melalui propeler shaft.
Ketika pertama kali mesin dihidupkan yang pertama kali digerakan sebagai penggerak awal adalah Roda penerus ini yang digerakkan oleh motor starter.

  • Mekanisme Katup
Diatas diketahui bahwa fungsi piston sebagai penerima tenaga dari proses pembakaran. Nah apa itu proses pembakaran ?Untuk apa proses pembakaran itu ?Mengapa dapat terjadi pembakaran bahan bakar?
Yang dimaksud dengan proses pembakaran adalah proses dimana campuran bahan bakar (bensin/solar) dan udara yang telah dikabutkan masuk ke ruang bakar dan busi memercikan bunga api akibat adanya loncatan listrik bertegangan ribuan Volt.Bayangkan jika tabung gas dimasukkan sedikit api rokok maka akan terjadi sebuah ledakan. Begitu juga yang terjadi di sini. Ketika campuran bahan bakar dan udara masuk keruang bakar pada waktu itu terjadi loncatan bunga api oleh busi maka terjadilah LEDAKAN. Yang nantinya ledakan itu dimanfaatkan untuk menggerakan torak yang merubah tenaga panas menjadi tenaga gerak.
Nah sekarang bagaimana supaya campuran bahan bakar udara itu masuk ke ruang bakar tepat ketika busi akan memercikan api supaya terjadi ledakan? Memang benar jika campuran bahan bakar udara masuk di waktu yang tidak tepat maka tidak akan ada ledakan yang besar atau mungkin tidak ada. Faktor-faktor yang dapat menghasilkan tenaga yang optimal adalah : ketika campuran bahan bakar udara masuk ke ruang bakar harus dalam keadaan sudah menjadi gas atau kabut, busi harus sudah siap dalam meloncatkan listrik yang bertegangan besar, keadaan piston/torak harus berada di atas (TMA) sekitar 80 sebelum TMA/ Titik Mati Atas, dan beberapa faktor-faktor lainnya.
Untuk mengatur kejadian itu supaya tepat maka fungsinya komponen dari mekanisme katup lah yang mengatur membuka menutupnya katup hisap/buang. Katup hisap untuk membuka saluran campuran bahan bakar udara masuk ke ruang bakar. Katup buang untuk membuka saluran untuk membuang sisa hasil pembakaran dari ruang bakar ke knalpot melalui exhaust manifold.

  • Bak Oli (Oil Pan)
Bagian bawah dari blok silinder adalah bak oli (oil Pan) ada yang menyebutnya carter adalah sebuah wadah oli mesin yang nantinya digunakan dalam sistem pelumasan. Bak Oli dibuat dari baja yang dicetak dan dilengkapi dengan penyekat (separator) untuk menjaga agar permukaan oli tetap rata ketika dalam keadaan jalan yang menurun atau menanjak. Bak oli harus kuat untuk menjaga dari benturan langsung dengan jalan.


 
Sistem Pemindah Tenaga (SPT)
gambar di atas merupakan contoh SPT yang digunakan pada kendaraan tipe penggerak roda belakang (Front Engine Rear Drive-FR), salah satu SPT yang sekarang sering diterapkan pada kendaraan roda empat.
Kendaraan akan bisa bergerak ketika kendaraan tersebut dilengkapi dengan SPT.. SPT berfungsi untuk mengatur/mengubah putaran yang dihasilkan oleh engine supaya bisa diteruskan ke jalan melalui roda/ban.
Klasifikasi kendaraan jika dilihat dari SPT yang digunakan dapat dibedakan menjadi:


1. Front Engine Rear Drive (FR) 2. Front Engine Front Drive (FF) 3. Rear Engine Rear Drive (RR) 4. Four Wheel Drive (FWD)


Secara garis besar, materi yang akan dipelajari pada SPT yaitu: Kopling (Clutch), Transmisi (Transmission), Propeller shaft, Gardan (Differensial) dan Poros Penggerak Roda (Axle)
  • Kopling (cluctch)
terletak diantara mesin dan transmisi, fungsinya adalah untuk menghubungkan dan melepaskan tenaga dari mesin ke transmisi melalui kerja pedal selama perkaitan roda gigi. Kopling juga dapat memindahkan tenaga secara perlahan - lahan dari mesin ke roda - roda penggerak agar gerak mula kendaraan dapat berlangsung dengan lembut dan perpindahan roda - roda gigi transmisi dapat lembut sesuai dengan kondisi jalanya kendaraan.

rankaian kopling:
  1. pelat kopling(cluctch disc)
  2. tutup kopling (cluctch cover)
  3. mekanisme penggerak
  • ·         Transmisi(transmission)

berfungsi untuk merubah kecepatan sesuai dengan keinginan serta memperbesar momen.Transmisi dibagi 2 yaitu : transmisi manual dan transmisi otomatis

  • propeller shaft

berfungsi untuk meneruskan tenaga putar dari transmisi ke gardan (differential). Propeller shaft dibuat dari tabung pipa baja yang memiliki ketahanan terhadap gaya puntiran atau bengkok. Pada propeller shaft terdapat balance weight yang berfungsi untuk mennyeimbangkan propeller pada saat berputar. Untuk kendaraan yang panjang maka propeller shaft itu terdiri dari 2 atau 3 joint.
  • Gardan(differential)

berfungsi untuk memperbesar momen, meneruskan putaran dari propeller shaft ke axle shaft, dan merubah sudut putar 180 derajat menjadi 90 derajat. Gardan terdiri dari 2 bagian yaitu : final gear dan differential gear.

  • Poros penggerak(drive shaft)

berfungsi menggerakkan roda - roda kendaraan, yang menggunakan sistem suspensi independent.Poros penggerak yang di bahas kali ini adalah kombinasi Fixed constant velocity joint, dan Slidable constant velocity joint.
tipe constant velocity joint :
  1. tripod joint : mempunyai tiga roller dan bentuknya sederhana dan umumnya joint tipe ini dibuat agar dapat bergerak pada arah axial.
  2. birfield joint : mempunyai beberapa steel ball,agar kecepatan seragam dapat di pertahankan dengan ketelitian yang tinggi. Birfield joint dibuat sedemikian rupa hingga perubahan panjangnya berlaku sesuai gerak kendaraan.

  • axle dan axle shaft


berfungsi untuk meneruskan tenaga putar dari Gardan (differential) ke roda - roda. Adapun tipe - tipe axle shaft antara lain : tipe full floating, tipe 3/4 floating, dan tipe semi floating.
  1. tipe full floating : bearing terletak diantara axle housing dan wheel hub dan roda terkait pada wheel hub.tipe ini banyak digunakan pada truk.
  2. tipe 3/4 floating : pada tipe ini antara axle housing dan wheel hub diapasang bearing tunggal dan roda terpasang langsung pada poros.
  3. tipe semi floating : pada tipe ini bearing dipasang diantara axle housing dan poros axle, dan roda terpasang langsung pada poros.

 
Sistem Kemudi



Berfungsi untuk mengatur arah kendaraan dengan cara membelokan roda depan. Bila roda kemudi di putar, steering coloum akan meneruskan tenaga putarnya ke steering gear. Steering gear memperbesar tenaga putar ini sehingga dihasilkan momen yang lebih besar untuk menggerakan roda depan melalui steering lingkage, Tipe steering yang akan di bahas hanya dua yaitu tipe rack and pinion dan tipe recirculating ball. Bagian utama sistem kemudi : steering coloum, steering gear, steering lingkage, dan steering wheel. Pada sistem kemudi ada yang disebut dengan power steering. Power steering memliki booster hidraulis dibagian tengah mekanisme kemudi agar kemudi menjadi lebih ringan.



Sistem Suspensi

Suspensi adalah kumpulan komponen tertentu yang berfungsi meredam kejutan, getaran yang terjadi pada kendaraan akibat permukaan jalan yang tidak rata yang dapat meningkatkan kenyamanan berkendara dan pengendalian kendaraan. Sistem suspensi kendaraan terletak di antara bodi (kerangka) dengan roda. Ada dua jenis utama suspensi yaitu :
  • Sistem suspensi dependen atau sistem suspensi poros kaku (rigid)

Roda dalam satu poros dihubungkan dengan poros kaku (rigid), poros kaku tersebut dihubungkan ke bodi dengan menggunakan pegas, peredam kejut dan lengan kontrol (control arm). banyak digunakan pada kendaraan niaga.
  •  Sistem suspensi independen atau sistem suspensi bebas

Antara roda dalam satu poros tidak terhubung secara langsung, masing-masing roda (roda kiri dan kanan) terhubung ke bodi atau rangka dengan lengan suspensi (suspension arm), pegas dan peredam kejut. Goncangan atau getaran pada salah satu roda tidak memengaruhi roda yang lain.



Sistem Rem
Sistem rem dalam teknik otomotif adalah suatu sistem yang berfungsi untuk :
  1. Mengurangi kecepatan kendaraan.
  2. Menghentikan kendaraan yang sedang berjalan.
  3. Menjaga agar kendaraan tetap berhenti.

Komponen utama dalam sistem rem terdiri dari :
  • Pedal rem atau tuas rem.
  • Penguat (booster).
  • Silinder master (master cylinder).
  • Saluran pengereman atau kabel (lines).
  • rem drum atau rem cakram.

 
Sistem Kelistrikan
kelistrikan mesin
  ialah sistem otomatiasi yang dipergunakan untuk menghidupkan mesin serta mempertahankanya agar tetap hidup. Bagian - bagianya terdiri atas baterai yang mensuplai listrik ke komponen kelistrikan lainnya, sistem pengisian yang mensuplai listrik ke baterai, sistem stater yang memutarkan mesin pertama kali, sistem pengapian yang membakar campuran udara bahan bakar yang dihisap ke dalam silinder, dan perlengkapan kelistrikan lainnya.
kelistrikan bodi
komponen - komponen kelistrikan bodi adalah komponen kelistrikan yang di lengkapi dalam bodi kendaraan. Termasuk komponen sistem penerangan, meter kombinasi, sistem wiper dan washer dan komponen lainnya yang bertujuan untuk menjamin keamanan dan kenikmatan saat mengendarai. juga termasuk jaringan kabel yang menghubungkan komponen- komponen listrik.

POROS, SABUK, BANTALAN



                        
                       Poros
Menurut Elemenn Mesin Sularso,1987:hal 1, Poros adalah salah satu bagian terpenting dari mesin. Hampir semua  mesin meneruskan tenaga bersama-sama dengan putaran. Peranan dalam transmisi seperti itu dipegang oleh poros. Secara garis besarnya poros dibedakan menjadi:


1.      Poros transmisi
Poros ini mendapat beban puntir murni atau puntir dan lentur. Daya ditransmisikan kepada poros ini melalui kopling, roda gigi, puli sabuk dan sproket rantai.
2.      Spindel
Spindel adalah poros transmisi yang relatif pendek, seperti poros utama mesin perkakas, dimana beban utamanya berupa puntiran. Syarat yang harus dipenuhi oleh poros ini adalah depormasinya harus kecil  dan bentuk serta ukurannya harus teliti.
3.      Gandar
Gandar adalah poros yang dipasang diantara roda-roda kereta barang dimana, tidak mendapat beban puntir. Gandar ini hanya mendapat beban lentur.
Dalam merencanakan sebuah poros hal-hal penting yang diperhatikan adalah sebagai berikut :
1.      Kekuatan poros
Kekuatan poros adalah kekuatan poros untuk menerima beban puntir atau lentur atau gabungannya. Perlu juga diperhatikan jika poros mendapat alur pasak atau mengalami pengecilan diameter (poros bertingkat). Jadi poros harus kuat dan mampu untuk menerima semua beban tersebut.

2.      Kekauan poros
Meskipun poros sudah kuat tetapi jika lenturan atau defleksi puntirannya harus besar, misalnya pada kotak roda gigi. Oleh karena itu disamping kekuatannya harus diperhatikan dan disesuaikan dengan mesin yang akan dilayani.
3.      Putaran kritis
Bila putaran suatu mesin dinaikkan maka pada harga tertentu akan menimbulkan getaran yang luar biasa besarnya. Putaran ini disebut putaran kristis.  Jika mungkin poros harus direncanakan dengan putaran kerja dibawah putaran kristisnya.
4.      Bahan
Bahan untuk poros hendaknya bahan yang tahan terhadap korosi, terutama untuk poros yang bersinggungan langsung dengan fluida yang korosif dan poros mesin yang sering berhenti dalam jangka waktu yang lama. Tetapi pada batas-batas tertentu dapat dilakukan perlindungan terhadap korosi.
a.             Poros yang menerima momen puntir
Momen puntir (juga disebut sebagai momen rencana) adalah T (kg.mm) maka momen puntir dapat dicari dengan :
T     = 9,74 x 105 ………..……………(2.1) Sularso,Elemen Mesen, hal. 7
Dimana:
T     = Momen Puntir / Torsi (Kg.mm)
Pd  = Daya rencana (Kw)
n1    = Putaran poros (rpm)
b.            Poros dengan beban berfluktuasi
Dalam praktek sebenarnya, poros mendapatkan momen torsi dan momen bending yang berfluktuasi. Untuk merencanakan poros lurus dan poros counter maka haruslah mempertimbangkan adanya faktor kombinasi shock  dan fatique didalam menghitung momen torsi (T) dan momen bending (M). Suatu poros yang mendapatkan beban kombinasi momen bending dan torsi, maka :
-          Momen torsi eqivalen (Te) :
Te =  ……………...   (2.2) ) Khurmi, Machine Design, hal. 431
-          Momen bending equivalen (Me) :
Me = .... (2.3) Khurmi, Machine Design, hal. 431
Dimana :
Km= faktor kombinasi shock  dan fatique untuk bending
Kt  = faktor kombinasi shock  dan fatique untuk torsi
Table 2.1 Harga Km dan Kt
Jenis Pembahasan
Km
Kt
-          Poros Diam
  1. Beban berangsur-angsur
  2. Beban mendadak (kejut)
-          Poros berputar
  1. Beban tenang (steady)
  2. Beban mendadak / kejut ringan
  3. Beban mendadak / kejut berat

1,0
1,5 – 2,0

1,5
1,5 – 2,0
2,0 – 3,0

1,0
1,5 -2,0

1,0
1,5 – 2,0
1,5 – 3,0

(Sumber : Elemen mesin I, hal. 149)
Diameter poros yang direncanakan menurut puntir equivalen (Te)
ds  =…………………………….(2.4) Khurmi, Machine Design, hal 411
Diameter poros yang direncanakan menurut puntir equivalen (Me)
ds        =…………………………….(2.5)Khurmi, Machine Design, hal 415

                       Penerus daya dengan sabuk (belt)
Sabuk penggerak adalah suatu peralatan dari mesin yang bekerjanya berdasarkan dari gesekan. Melalui gesekan antara puli dan sabuk penggerak gaya melingkar dapat dipindahkan dari puli penggerak ke puli yang digerakan. Perpindahan gaya ini tergantung dari tekanan sabuk  penggerak ke permukaan puli, maka ketegangan  dari sabuk penggerak sangatlah penting dan bila terjadi slip kekuatan geraknya akan berkurang. Transmisi sabuk dapat dibagi atas tiga kelompok yaitu :
1.      Sabuk rata
Sabuk rata dipasang  pada puli silinder dan meneruskan  momen antara dua poros yang  jaraknya dapat sampai 10 m dengan perbandingan putaran  antara 1/1 sampai 6/1.
2        Sabuk dengan penampang  trapesium
Dipasang pada puli  dengan alur dan meneruskan momen antara dua poros yang jaraknya dapat sampai  5 m  dengan perbndingan putaran  1/1 sampai 7/1.

3.      Sabuk dan gigi
Digerakkan dengan sproket pada jarak pusat sampai 2 m dan meneruskan putaran secara tepat dengan perbandingan antara 1/1 sampai 6/1.
Sebagian besar transmisi  sabuk  menggunakan sabuk-V  karena  muda penanganannya dan harganya murah. Kecepatan sabuk  direncanakan 10 sampai 20 (m/s) pada umumnya, dan maksimum  sampai 25 (m/s). Daya maksimum  yang dapat  ditrasmisikan  kurang lebih sampai 500 (Kw).
Sumber : (Elemen Mesin II, Ir. I Made Rasta,2005,hal 48)

a.       Transmisi sabuk datar
Menurut Elemen Mesin II, Ir.I Made Rasta,2005,hal 50, sabuk penggerak  datar memberikan fleksibel, menyerap hentakan, pemindahan  kekuatan  yang efisien  pada kecepatan tinggi, tahan tehadap kikisan panas dan harganya murah. Selain itu sabuk datar ini juga  dapat dipakai  pada puli yang kecil. Kelemahan dari sabuk ini  adalah karena  sabuk ditentukan  untuk tekanan  yang tinggi, maka menyebabkan beban  yang besar  bagi batalan . Adapun tipe dari sabuk  penggerak datar ini yaitu :
1.      Sabuk terbuka
Sabuk ini digunakan  untuk menghubungkan  dua poros sejajar  dan berputar  dengan arah  yang sama. Jika jarak diantara  kedua sumbu besar, maka sisi kencang  sabuk ditempatkan  pada bagian bawah.




2.      Sabuk silang



Sabuk ini digunakan untuk dua poros sejajar  dengan putaran  berlawanan arah. Untuk  menghindari sobekan keausan, jarak kedua poros maksimum 20b, dimana b adalah lebar sabuk dengan kecepatan di bawah 15 (m/s2)

3.      Sabuk perempat putaran
Digunakan pada poros yang tegak lurus dan berputar pada satu arah  tertentu. Jika dikehendaki arah lain maka perlu puli pengarah. Untuk mencegah lepasnya sabuk, lebar bidang singgung puli harus lebih besar atau sama dengan 1,4 lebar sabuk.





4.      Sabuk dengan puli  pengencang
Sabuk ini digunakan pada poros sejajar dengan sudut  kontak kecil pada puli kecil.




5.      Sabuk kompon
Digunakan  untuk meneruskan daya dari  poros satu ke poros lainnya melalui beberapa puli.




6.      Sabuk dengan puli pelepas
Sabuk ini digunakan jika dikehendaki menghentikan atau menjalankan  poros mesin  tanpa mempengaruhi  puli penggerak. Puli yang dipasak  pada poros mesin dan yang berputar  pada kecepatan  sama poros mesin disebut  test pulley. Puli yang berputar bebas  disebut  a loose pulley.
b.   Transmisi sabuk –V
Menurut Elemen Mesin,Sularso,1987,hal 163, Sabuk-V terbuat dari karet dan mempunyai penampang  trapesium. Tenunan  tetoron  atau semacamnya dipergunakan sebagai inti  sabuk untuk membawa tarikan yang besar (Gambar2.6). Sabuk-V dibelitkan dikeliling alur puli yang berbentuk V pula. Bagian sabuk yang sedang membelit pada puli ini mengalami lengkungan sehingga lebar bagian dalamnya akan bertambah besar. Gaya gesekan juga akan  bertambah karena pengaruh bentuk baji, yang akan menghasilkan transmisi daya  yang besar pada tegangan yang relatif rendah. Hal ini merupakan salah satu keunggulan sabuk-V dibandingkan dengan sabuk rata.
Dalam Gambar 2.7 diberikan berbagai proporsi penampang sabuk-V yang umum dipakai
1.      Terpal
2.      Bagian Penarik
3.      Karet Pembungkus
4.      Bantal Karet





Atas dasar daya rencana dan putaran poros penggerak, penampang sabuk-V yang sesuai dapat diperoleh (lihat gambar 2.8). Daya rencana dihitung dengan mengalikan daya yang akan diteruskan dengan factor koreksi.

Gambar 2.8 Diagram pemilihan sabuk-V
Sumber : Sularso, Dasar Perencanaan dan Pemilihan Elemen Mesin, hal. 164

Transmisi sabuk-V hanya dapat menghubungkan poros-poros yang sejajar dengan putaran yang sama.  Dibandingkan dengan transmisi roda gigi atau rantai, sabuk-V bekerja lebih halus dan tak bersuara. Untuk mempertinggi daya yang ditransmisikan dapat dipakai beberapa sabuk-V yang dipasang sebelah-menyebelah. Jarak sumbu poros harus sebesar 1,5 – 2 kali diameter puli besar.
Putaran puli penggerak dan yang digerakkan berturut-turut adalah n1 (rpm) dan n2 (rpm), dan diameter nominal masing-masing adalah dp (mm) dan Dp (mm) serta perbandingan putaran U dinyatakan dengan n2/n1 atau dp/Dp. Karena sabuk-V biasanya dipakai untuk menurunkan putaran, maka perbandingan yang umum dipakai ialah perbandingan reduksi i (i > 1) dimana :
........... ....................................... (2.6) Elemen mesin Sularso.hal 166
Dimana :
n1........ = Putaran penggerak (rpm)
n2........ = Putaran yang digerakkan (rpm)
dp....... = Diameter puli penggerak (mm)
Dp...... = Diameter puli yang digerakkan (mm)
Kecepatan linier sabuk-V (m/s) adalah :
........... .................................................... (2.7) Khurmi, Machine Design, hal 667
Dimana :
V ....... = Kecepatan linier sabuk (m/s)
dp ...... = Diameter puli penggerak (mm)
n1........ = Putaran penggerak (rpm)
Panjang keliling sabuk yaitu :
…….… …(2.8)Elemen Mesin, Sularso. hal 170
Dimana :
L......... = Panjang keliling sabuk (mm)
C........ = Jarak antar poros (mm)
Tabel  2.2 Panjang Sabuk  V standar
Nomor
nominal
Nomor
nominal
Nomor
nominal
Nomor
nominal
(inch)
(mm)
(inch)
(mm)
(inch)
(mm)
(inch)
(mm)
10
254
45
1143
80
2032
115
2921
11
279
46
1168
81
2057
116
2946
12
305
47
1194
82
2083
117
2972
13
330
48
1219
83
2108
118
2997
14
356
49
1245
84
2134
119
3023
15
381
50
1270
85
2159
120
3048
16
406
51
1295
86
2184
121
3073
17
432
52
1321
87
2210
122
3099
18
457
53
1346
88
2235
123
2124
19
483
54
1372
89
2261
124
3150
20
508
55
1397
90
2311
125
3175
21
533
56
1422
91
2337
126
3200
22
559
57
1448
92
2362
127
3226
23
584
58
1473
93
2388
128
3251
24
610
59
1499
94
2413
129
3277
25
635
60
1524
95
2438
130
3302
26
660
61
1549
96
2464
131
3327
27
686
62
1575
97
2489
132
3353
28
711
63
1600
98
2515
133
3378
29
737
64
1626
99
2540
134
3404
30
762
65
1651
100
2565
135
3429
31
787
66
1676
101
2591
136
3454
32
813
67
1702
102
2616
137
3480
33
838
68
1727
103
2616
138
3505
34
864
69
1753
104
2642
139
3531

(Sumber : Dasar Perencanaan dan Pemilihan  Elemen Mesin hal, Sularso. 168)
Jumlah sabuk yang diperlukan
...........   ..………………..………………………(2.9) Elemen Mesin, Sularso. hal 173
Dimana :
N ....... = Jumlah sabuk yang diperlukan
Pd....... = Daya rencana motor (Kw)
Po....... = Kapasitas daya yang ditransmisikan untuk satu sabuk tunggal (tabel 2.2)
KӨ..... = Faktor koreksi (tabel 2.3)
Tabel 2.3 Kapasitas daya yang ditransmisikan untuk satu sabuk tunggal Po (Kw)
Putaran puli kecil (rpm)
Penampang A
Merek Merah
Standar
Harga tambahan karena
perbandingan putaran
67 mm
100 mm
67 mm
100 mm
1,25-1,34
1,35-1,51
1,52-1,99
2,00-
200
400
600
800
1000
1200
1400
1600
0,15
0,26
0,35
0,44
0,52
0,59
0,66
0,72
0,31
0,55
0,77
0,98
1,18
1,37
1,54
1,71
0,12
0,21
0,27
0,33
0,39
0,43
0,48
0,51
0,26
0,48
0,67
0,84
1,00
1,16
1,31
1,43
0,01
0,04
0,05
0,07
0,08
0,10
0,12
0,13
0,02
0,04
0,06
0,08
0,10
0,12
0,13
0,15
0,02
0,04
0,07
0,09
0,11
0,13
0,15
0,18
0,02
0,05
0,07
0,10
0,12
0,15
0,18
0,20

Putaran puli kecil (rpm)
Penampang B
Merek Merah
Standar
Harga tambahan karena
perbandingan putaran
118mm
150
mm
118mm
150 mm
1,25-1,34
1,35-1,51
1,52-1,99
2,00-
200
400
600
800
1000
1200
1400
1600
0,51
0,90
1,24
1,56
1,85
2,11
2,35
2,67
0,77
1,38
1,93
2,43
2,91
3,35
3,75
4,12
0,43
0,74
1,00
1,25
1,46
1,82
1,14
1,42
0,67
1,18
1,64
2,07
2,46
2,82
2,14
3,42
0,04
0,09
0,13
0,18
0,22
0,26
0,31
0,35
0,05
0,10
0,15
0,20
0,26
0,31
0,36
0,41
0,06
0,12
0,18
0,23
0,30
0,35
0,41
0,47
0,07
0,13
0,20
0,26
0,33
0,40
0,46
0,53

(Sumber : Elemen Mesin, Sularso, hal. 172)

Tabel 2.4 Faktor Koreksi (KӨ)

Dp-dp

C
Sudut kontak Puli Kecil Ө (0)
Faktor Koreksi KӨ
0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00
1,10
1,20
1,30
1,40
1,50
180
174
169
163
157
151
145
139
133
127
120
113
106
99
90
83
1,00
0,99
0,97
0,96
0,94
0,93
0,91
0,89
0,87
0,85
0,82
0,80
0,77
0,73
0,70
0,65

(Sumber : Elemen Mesin, Sularso, hal. 174)
Sudut antara kedua sisi penampang sabuk yang dianggap sesuai adalah sebesar 30 – 40 derajat. Semakin kecil sudut ini, gesekan akan semakin besar karena efek baji. Sudut yang kecil pada sabuk kecil atau sabuk standar dapat menyebabkan terbenamnya sabuk kedalam alur puli. Akhir-akhir ini dalam perdagangan diperkenalkan sabuk-V dengan sudut lebar, yaitu 60 derajat. Untuk sabuk ini dipakai bahan dengan perpanjangan yang kecil untuk memperbaiki sifat buruk diatas. Tetapi dengan kondisi semacam ini, gesekan dan perbandingan tarikan yang dicapai menjadi lebih rendah.
Sifat penting dari sabuk yang perlu diperhatikan adalah perubahan bentuknya karena tekanan samping, dan ketahanannya terhadap panas. Bahan yang biasa dipakai adalah karet alam atau sentesis. Pada masa sekarang, telah banya dipakai karet niopren yang kuat. Tetapi akhir-akhir ini pemakaian inti tetoron semakin populer untuk memperbaiki sifat perubahan panjang sabuk karena kelembaban dan karena pembebanan. Dalam proses pembuatan sabuk, inti tetoron dapat mengerut pada waktu pendinginan, sehingga perlu proses khusus untuk memperbaikinya. Ada juga proses yang membiarkan pengerutan tersebut dengan perhitungan panas dan memulihkan bentuknya ke keadaan semula.
Untuk menentukan tegangan sabuk digunakan rumus :
...........   ................................ (2.10) Elemen Mesin, Sularso. hal 173
Selanjutnya digunakan rumus hubungann antara tegangan sabuk dengan sudut kontak yaitu :
........................................... (2.11) Khurmi, Machine Design, hal 666
Dimana :
T1     = Tegangan sabuk pada sisi tarik ( N )
T2     = Tegangan sabuk pada sisi tekan ( N )
     = Koefisien gesek sabuk
     = Sudut antara kedua sisi penampang sabuk
      = Sudut kontak sabuk ( rad )
Sedangkan besar momen puntir yang ditimbulkan oleh putaran puli yaitu :
         P = (T1 – T2 ) .R .............................................. (2.12) Khurmi, Machine Design, hal 668
Dimana :
P = daya ( watt )
V = kecepatan linier sabuk ( m/s2 )
c.    Penerus daya dengan sabuk gilir
Menurut Elemen mesin,Sularso,1987,hal 179 Tranmisi sabuk yang bekerja atas dasar gesekan belitan mempunyai beberapa keuntungan karena murah harganya, sederhana konstruksinya dan mudah mendapatkan perbandingan yang diinginkan. Namun transmisi sabuk tersebut mempunyai kekurangan dibandingkan rantai atau roda gigi, yaitu karena terjadi slip pada pulinya dan sabuk. Oleh karena itu macam tranmisi sabuk biasanya tidak dapat dipakai bilamana dikehendaki putaran tetap atau perbandingan transmisi yang tetap. Akhir-akhir ini telah dikembangkan macam sabuk yang dapat mengatasi kekurangan tersebut yaitu sabuk gilir timing belt. Pada gambar 2.9 digambarkan sabuk gilir yang telah dililit pada sebuah puli.

            Sabuk gilir terbuat dari karet neopon atau plastik peiuretan sebagai bahan cetak, dengan inti serat gelas atau kawat baja, serta gigi yang diletakan dengan teliti dipermukaan sebelah dalam dari sabuk ini. Karena sabuk ini dapat melakukan trasmisi mengait seperti roda gigi atau rantai, maka gerakan dengan perbandingan yang tetap dapat diperoleh. Batas maximum kecepatan sabuk gilir 25 m/s2, yang berarti lebih tinggi dari sabuk-V dan daya yang dapat ditransmisikan adalah sampai 60 KW.

                       Bantalan
Menurut Elemen mesin,Sularso,1987,hal 103, Bantalan adalah elemen mesin yang menumpu poros berbeban, sehingga putaran atau gerakan bolak-baliknya dapat berlangsung secara halus, aman dan panjang umur. Bantalan harus cukup kokoh untuk memungkinkan poros serta elemen mesin lainnya bekerja dengan baik. Jika bantalan tidak berfungsi dengan baik maka prestasi seluruh system akan menurun atau tidak dapat bekerja secara semestinya. Jadi bantalan dalam permesinan dapat disamakan peranannya dengan pondasi pada gedung.

A.     Klasifikasi Bantalan
Menurut Elemen mesin,Sularso,1987,hal 103 Bantalan dapat diklasifikasikan sebagai berikut :
1.      Atas dasar gerakan bantalan terhadap poros
a.       Bantaan luncur
Pada bantalan ini terjadi gesekan antara permukaan poros dan bantalan, karena permukaan poros ditumpu oleh permukaan bantalan dengan lapisan pelumas.












b.      Bantalan gelinding
Pada bantalan gelinding terjadi gesekan gelinding antara bagian berputar dengan bagian yang diam menekan elemen gelinding seperti bola (peluru), rol atau rol jarum dan rol bulat.








2.      Atas dasar arah beban terhadap poros
a.       Bantalan radial
Arah beban yang ditumpu bantalan ini adalah tegak lurus sumbu poros.
b.      Bantalan aksial
Arah beban bantalan ini sejajar dengan sumbu poros.
c.       Bantalan gelinding khusus
Bantalan ini dapat menumpu beban yang arahnya sejajar dan tegak lurus sumbu poros.

B.        Perbandingan antara Bantalan Luncur dan Bantalan Gelinding
Bantalan luncur Menurut Elemen mesin,Sularso,1987,hal 103 mampu menumpu poros berputar tinggi dengan beban besar. Bantalan ini sederhana konstruksinya dan dapat dibuat serta dipasang dengan mudah. Karena gesekannya yang besar pada wakyu mulai jalan, bantalan luncur memerlukan momen awal yang besar. Pelumasan pada bantalan ini tidak begitu sederhana. Panas yang timbul dari gesekan yang besar, terutama pada beban besar, memerlukan pendinginan khusus. Sekalipun demikian, karena adanya lapisan pelumas, bantalan ini dapat meredam tumbukan dan getaran sehingga hampir tidak bersuara. Tingkat ketelitian yang diperlukan tidak setinggi bantalan gelinding sehingga dapat lebih mudah .
Bantalan gelinding pada umumnya lebih cocok untuk beban kecil daripada bantalan luncur, tergantung pada bentuk elemen gelindingnya. Putaran pada bantalan ini dibatasi oleh gaya sentrifugal yang timbul pada elemen gelinding tersebut. Karena konstruksinya yang sukar dan ketelitiannya yang tinggi, maka bantalan gelinding hanya dibuat oleh pabrik-pabrik tertentu saja. Adapun haraganya pada umumnya lebih mahal daripada bantalan luncur. Untuk menekan biaya pembuatan serta memudahkan pemakaian, bantalan gelinding diproduksi menurut standar dalam berbagai ukuran dan bentuk. Keunggulan bantalan ini adalah pada gesekannya yang sangat rendah. Pelumasannya pun sangat sederhana, cukup dengan gemuk, bahkan pada macam yang memakai sil sendiri tak perlu pelumasan lagi. Meskipun ketelitiannya sangat tinggi, namun karena adanya gerakan elemen gaduh dibandingkan dengan bantalan luncur.
Pada waktu memilih bantalan, ciri masing-masing harus dipertimbangkan sesuai pemakaian, lokasi, dan macam beban yang akan dialami.

C.      Perhitungan Beban dan Umur Bantalan Gelinding
1.             Perhitungan beban equivalen
Menurut Elemen mesin,Sularso,1987,hal 134 Suatu beban yang besarnya sedemikian rupa hingga memberikan umur yang sama dengan umur yang diberikan oleh beban dan kondisi putaran sebenarnya disebut beban ekivalen dinamis. Jika suatu deformasi permanen, ekivalen dengan deformasi permanent maksimum yang terjadi karena kondisi beban statis yang sebenarnya pada bagian dimana elemen gelinding membuat kontak dengan cincin pada tegangan maksimum, maka beban yang menimbulkan deformasi tersebut dinamakan beban ekivalen statis. Misalkan sebuah bantalan membawa beban radial Fr (kg) dan beban aksial Fa (kg). Maka beban ekivalen dinamis P (kg) adalah sbagai berikut :
Untuk bantalan radial (kecuali bantalan rol silinder)
........... Pr = XV Fr + Y Fa ......................................... (2.13) Elemen Mesin, Sularso. hal 135)
Untuk bantalan aksial
........... P = X Fr + Y Fa ............................................... (2.14) Elemen Mesin, Sularso. hal 135)
Factor V sama dengan 1 untuk pembebanan pada cincin dalam yang berputar, dan 1,2 untuk pembebanan pada cincin luar yang berputar. Harga-harga X dan Y terdapat dalam table 2.5 berikut ini :
Tabel 2.5 Faktor-faktor V, X, Y dan Xo, Yo
Jenis Bantalan
Beban putaran pd cincin dalam
Beban putaran pd cincin luar
Baris tunggal Fa/VF1>e
Baris ganda Fa/VFr<eFa/VFr >e
e
Baris
Tunggal
Baris ganda
V
X
Y
X
Y
X
Y

Xo
Yo
Xo
Yo
Bantalan bola alur dalam
FaCo =          0,014
          =   0,028
          =   0,028

          =   0,084
          =   0,11
          =   0,17
          =   0,28
          =   0,42
          =          0,56         
1
1,2
0,56
2,30
1,99
1,71

1,55
1,45
1,31
1,15
1,04
1,00
1
0
0,56
2,30
1,90
1,71

1,55
1,45
1,31
1,15
1,04
1,00
0,19
0,22
0,26

0,28
0,30
0,34
0,38
0,42
0,44
0,6
0,5
0,6
0,5
Bantalan bola luar
a        =   20o
          =   25o
          =   30o
                =   35o
          =   40o

1
1,2
0,43
0,41
0,39
0,37
0,35
1,00
0,87
0,76
0,66
0,57
1
1,09
0,92
0,78
0,66
0,55
0,70
0,67
0,63
0,60
0,57
1,63
1,41
1,24
1,07
0,93
0,57
0,68
0,80
0,95
1,14
0,5
0,42
0,38
0,33
0,29
0,26
1
0,84
0,76
0,66
0,58
0,52
Untuk bantalan baris tunggal, bila Fa/VFr ≤e, X = 1, Y = 0

(Sumber : Elemen Mesin, Sularso, hal. 135)


2.             Perhitungan umur nominal
Menurut Elemen mesin,Sularso,1987,hal 136 Umur nominal L (90% dari jumlah sample, setelah berputar 1 juta putaran tidak memperlihatkan kerusakan karena kelelahan gelinding) dapat ditentukan sebagai berikut :
Jika C (kg) menyatakan beban nominal dinamis spesifik dan P (kg) beban ekivalen dinamis, maka factor kecepatan fn adalah :
Untuk bantalan bola, ....................... (2.15) Elemen Mesin, Sularso. hal 136
Untuk bantalan rol,   ................ (2.16) ; (Elemen Mesin, Sularso. hal 136)
Factor umur bantalan adalah :
Untuk kedua bantalan,  .......................... (2.17) Elemen Mesin, Sularso. hal 136
Untuk umur nominal Lh adalah:
Untuk bantalan bola, Lh = 500 fh3 ………………….(2.18) Elemen Mesin, Sularso. hal 136
Untuk bamtalan rol, Lh = 500 fh 10/3    ….…..……….(2.19) Elemen Mesin, Sularso. hal 136
Dimana:
Fn = factor kecepatan
Fh = Faktor umur
C  = Beban nominal dinamis spesifik (N)
Lh = Umur nominal bantalan (jam)