Komponen Elektronika
Komponen elektronika mempunyai peran penting dalam penyusunan suatu sistem rangkaian elektronika. Interkoneksi antar komponen elektronika yang disusun dengan benar sesuai fungsi masing-masing kemudian dihububungkan dengan sumber listrik sampai terbentuk rangkaian elektronika, maka dapat menghasilkan fungsi sistem baru yang berbeda dengan fungsi masing-masing komponen. Contoh, resistor mempunyai fungsi untuk menahan arus, kondensator berfungsi sebagai filter, trafo berfungsi untuk menurunkan tegangan AC, dan dioda berfungsi sebagai penyearah. Jika komponen-komponen tersebut dirangkai dengan benar, maka dapat menghasilkan fungsi baru yakni power supply atau adaptor. Fungsi adaptor adalah sebagai sumber tegangan DC dan ini berbeda dengan fungsi setiap komponen elektronika penyusunnya.Berdasarkan cara kerjanya, komponen elektronika dibagi dua jenis yani komponen pasif dan komponen aktif sedangkan berdasarkan fungsinya komponen elektronika ada tiga jenis yakni tranducer, sensor, dan actuator. Komponen pasif tidak membutuhkan tambahan sumberdaya internal untuk bisa beroperasi sedangkan komponen aktif membutuhkan sumber internal tambahan agar bisa beroperasi.
Komponen Pasif
- Condensator/ Kapasitor
- Tahanan/ Hambatan/ Resistor
- Lilitan/ Coil/ Spul/ Induktor
- Switch/ Saklar
- Potensiometer/ Variable Resistor/ Trimpot
- Trafo/ Tranformator
- LED (Light Emiting Diode)
- Relay
- Lampu
- Motor DC
Komponen Aktif
- Dioda
- Dioda Zener
- Dioda Bridge
- Photo Dioda
- Photo Transistor
- Transistor
- Thyristor
- JFET
- MOSFET
- IC (Integrated Circuit)
Komponen Tranducer
- NTC (Negative Thermal Coeficient)
- PTC (Positive Thermal Coeficient)
- LDR (Light Dependent Resistance)
- Solarcell
- Microphone
Komponen Sensor
- NTC
- PTC
- Solarcell
- LDR
- Photo Dioda
- Photo Transistor
- Ultrasonic
- LED Infrared
- LED Ultraviolet
- Bimetal
- Reed Switch
Komponen Actuator
- LED
- Lampu DC
- Lampu Neoun
- Motor DC
- Speaker
- Buzzer
- Fan (Kipas)
- Relay
- Selenoid
- Contactor
1. DIODA
Dioda adalah komponen aktif semikonduktor yang terdiri dari persambungan (junction) P-N. Sifat dioda yaitu dapat menghantarkan arus pada tegangan maju dan menghambat arus pada tegangan balik. Dioda berasal dari pendekatan kata dua elektroda yaitu anoda dan katoda. Dioda semikonduktor hanya melewatkan arus searah saja (forward), sehingga banyak digunakan sebagai komponen penyearah arus. Secara sederhana sebuah dioda bisa kita asumsikan sebuah katup, dimana katup tersebut akan terbuka manakala air yang mengalir dari belakang katup menuju kedepan, sedangkan katup akan menutup oleh dorongan aliran air dari depan katup.
Dioda
disimbolkan dengan gambar anak panah yang pada ujungnya terdapat garis
yang melintang. Simbol tersebut sebenarnya adalah sebagai perwakilan
dari cara kerja dioda itu sendiri. Pada pangkal anak panah disebut juga
sebagai anoda (kaki positif = P) dan pada ujung anak panah disebut
sebagai katoda (kaki negative = N).
FUNGSI DIODA
1. Sebagai penyearah, untuk dioda bridge
2. Sebagai penstabil tegangan (voltage regulator), untuk dioda zener
3. Pengaman / sekering
4.
Sebagai rangkaian clipper, yaitu untuk memangkas / membuang level
sinyal yang ada di atas atau di bawah level tegangan tertentu.
5. Sebagai rangkaian clamper, yaitu untuk menambahkan komponen DC kepada suatu sinyal AC
6. Sebagai pengganda tegangan.
7. Sebagai indikator, untuk LED (light emiting diode)
8. Sebagai sensor panas, contoh aplikasi pada rangkaian power amplifier
9. Sebagai sensor cahaya, untuk dioda photo
10. Sebagai rangkaian VCO (voltage controlled oscilator), untuk dioda varactor
JENIS DIODA
1. DIODA PENYEARAH (RECTIFIER)
Dioda penyearah adalah jenis dioda yang
terbuat dari bahan Silikon yang berfungsi sebagai penyearah tegangan / arus
dari arus bolak-balik (ac) ke arus
searah (dc) atau mengubah arus ac
menjadi dc. Secara umum dioda ini disimbolnya.
Kaki-kaki dioda
yaitu kaki katoda ditandai dengan garis pada ujungnya
Gambar
1. dioda penyearah
2. DIODA ZENER
Dioda Zener merupakan dioda junction P
dan N yang terbuat dari bahan dasar silikon. Dioda ini dikenal juga sebagai
Voltage Regulation Diode yang bekerja pada daerah reverse (kuadran III). Potensial dioda zener berkisar mulai 2,4 sampai 200
volt dengan disipasi daya dari ¼ hingga 50 watt.
Fenomena tegangan breakdown
dioda ini menginspirasi pembuatan komponen elektronika kerabat dioda yang
bernama Zener. Tidak ada perbedaan struktur dasar dari Zener dengan dioda.
Dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata
tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya
baru terjadi breakdown pada tegangan ratusan volt, pada Zener bisa terjadi pada
angka puluhan dan satuan volt. Di datasheet ada Zener yang memiliki tegangan Vz
sebesar 2 volt, 5.6 volt dan sebagainya. Fungsi dari komponen ini biasanya
dipakai untuk pengamanan rangkaian setelah tegangan Zener.
Gambar 2. dioda zener
Perhatikan rangkaian berikut,
input tegangan akan yang masuk ke rangkaian lain dan beban akan dibatasi oleh
dioda zener. Jika input tegangan dibawah 5.6V, dioda tidak menghantarkan arus
sehingga arus akan mengalir ke rangkaian lain dan beban. Jika input tegangan
mencapai 5,6 V atau lebih maka dioda zener akan terjadi brekadown dan arus akan
mengalir melalui dioda, bukan ke rangkaian atau beban.
3. DIODA EMISI CAHAYA ( LIGHT EMITTING DIODE )
Dioda emisi cahaya atau dikenal dengan
singkatan LED merupakan Solid State Lamp yang merupakan piranti elektronik
gabungan antara elektronik dengan optik, sehingga dikategorikan pada keluarga
“Optoelectronic”. Sedangkan elektroda-elektrodanya sama seperti dioda lainnya,
yaitu anoda (+) dan Katoda (-). Ada tiga kategori umum penggunaan LED, yaitu
:
- Sebagai lampu indikator,
- Untuk transmisi sinyal cahaya
yang dimodulasikan dalam suatu jarak tertentu,
- Sebagai penggandeng rangkaian
elektronik yang terisolir secara total. Simbol,
bangun fisiknya dan konstruksinya diperlihatkan pada gambar berikut.
Bahan dasar yang digunakan dalam
pembuatan LED adalah bahan Galium Arsenida (GaAs)
atau Galium Arsenida Phospida (GaAsP)
atau juga Galium Phospida (GaP),
bahan-bahan ini memancarkan cahaya dengan warna yang berbeda-beda. Bahan GaAs
memancarkan cahaya infra-merah, Bahan GaAsP memancarkan cahaya merah atau
kuning, sedangkan bahan GaP memancarkan cahaya merah atau hijau.
Seperti halnya piranti elektronik
lainnya , LED mempunyai nilai besaran terbatas dimana tegangan majunya
dibedakan atas jenis warna
TABEL LED DAN
TEGANGANYA
Warna
|
Tegangan Maju
|
Merah
|
1.8 volt
|
Orange
|
2.0 volt
|
Kuning
|
2.1 volt
|
Hijau
|
2.2 volt
|
Gambar 3. dioda LED
Sedangkan besar arus maju suatu
LED standard adalah sekitar 20 mA. Karena dapat mengeluarkan cahaya, maka
pengujian LED ini mudah, cukup dengan menggabungkan dengan sumber tegangan dc
kecil saja atau dengan ohmmeter dengan polaritas yang sesuai dengan
elektrodanya.
LED konvensional terbuat dari mineral inorganik yang bervariasi sehingga menghasilkan warna sebagai berikut:
* Aluminium Gallium Arsenide (AlGaAs) – merah dan inframerah
* Gallium Aluminium Phosphide – hijau
* Gallium Arsenide/Phosphide (GaAsP) – merah, oranye-merah, oranye, dan kuning
* Gallium Nitride (GaN) – hijau, hijau murni (atau hijau emerald), dan biru
* Gallium Phosphide (GaP) – merah, kuning, dan hijau
* Zinc Selenide (ZnSe) – biru
* Indium Gallium Nitride (InGaN) – hijau kebiruan dan biru
* Indium Gallium Aluminium Phosphide – oranye-merah, oranye, kuning, dan hijau
* Silicon Carbide (SiC) – biru
* Diamond (C) – ultraviolet
* Silicon (Si) – biru (dalam pengembangan)
* Sapphire (Al2O3) – biru
LED biru pertama kali dan bisa dikomersialkan menggunakan substrat galium nitrida. LED ini ditemukan oleh Shuji Nakamura tahun 1993 sewaktu berkarir di Nichia Corporation di Jepang.
LED ini kemudian populer di penghujung tahun 90-an. LED biru ini dapat dikombinasikan ke LED merah dan hijau yang telah ada sebelumnya untuk menciptakan cahaya putih.
4. DIODA CAHAYA ( PHOTO-DIODE)
Dioda cahaya ini bekerja pada daerah
reverse, jadi hanya arus bocor saja yang melewatinya. Dalam keadaan gelap, arus
yang mengalir sekitar 10 A untuk dioda cahaya dengan bahan dasar germanium dan
1A untuk bahan silikon. Kuat cahaya dan temperature keliling dapat menaikkan
arus bocor tersebut karena dapat mengubah nilai resistansinya dimana semakin
kuat cahaya yang menyinari semakin kecil nilai resistansi dioda cahaya
tersebut. Penggunaan dioda cahaya diantaranya adalah sebagai sensor dalam
pembacaan pita data berlubang (Punch
Tape), dimana pita berlubang tersebut terletak diantara sumber cahaya dan
dioda cahaya. Jika setiap lubang pita itu melewati antara tadi, maka cahaya
yang memasuki lubang tersebut akan diterima oleh dioda cahaya dan diubah dalam
bentuk signal listrik. Sedangkan penggunaan lainnya adalah dalam alat pengukur
kuat cahaya (Lux-Meter), dimana
dalam keadaan gelap resistansi dioda cahaya ini tinggi sedangkan jika disinari
cahaya akan berubah rendah. Selain itu banyak juga dioda cahaya ini digunakan
sebagai sensor sistem pengaman (security)
misal dalam penggunaan alarm.
Gambar 4. dioda foto.
5. DIODA
VARACTOR
Dioda Varactor disebut juga sebagai
dioda kapasitas yang sifatnya mempunyai kapasitas yang berubah-ubah jika
diberikan tegangan. Dioda ini bekerja didaerah reverse mirip dioda Zener. Bahan
dasar pembuatan dioda varactor ini adalah silikon dimana dioda ini sifat
kapasitansinya tergantung pada tegangan yang diberikan padanya. Jika tegangan
tegangannya semakin naik, kapasitasnya akan turun. Dioda varikap banyak
digunakan pada pesawat penerima radio dan televisi di bagian pengaturan suara (Audio).
Gambar 5. dioda varactor
6. DIODA SCHOTTKY
(SCR)
DIODA
SCR singkatan dari Silicon Control Rectifier.
Adalah Dioda yang mempunyai fungsi sebagai pengendali. SCR atau Tyristor masih
termasuk keluarga semikonduktor dengan karateristik yang serupa dengan tabung
thiratron. Sebagai pengendalinya adalah gate(G).SCR sering disebut Therystor. SCR sebetulnya dari bahan
campuran P dan N. Isi SCR terdiri dari PNPN (Positif Negatif Positif Negatif) dan biasanya disebut PNPN Trioda.
Gambar 6. dioda schottky.
Pada gambar diatas terlihat SCR dengan anoda pada kaki yang
berulir, Gerbang gate pada kaki yang pendek, sedangkan katoda pada kaki yang
panjang.
2. KAPASITOR / KONDENSATOR
Macam-Macam Kapasitor / Kondensator
Macam-macam
dan Bentuk Kondensator Setelah anda tahu yang dimaksud dengan komponen
kondensator maupun kapasitor.
1. Kondensator Tetap
1. Kondensator Tetap
Kondensator tetap ialah suatu kondensator yang nilainya konstan dan
tidak berubah-ubah.(nilai kapasitasnya
tetap tidak dapat diubah).
Kondensator tetap ada tiga macam bentuk :
a. Kondensator Keramik (Ceramic Capacitor)
a. Kondensator Keramik (Ceramic Capacitor)
Bentuknya
ada yang bulat tipis, ada yang persegi empat berwarna merah, hijau, coklat dan
lain-lain.Dalam pemasangan di papan rangkaian (PCB), boleh dibolak-balik karena tidak mempunyai kaki positif dan
negatif. Mempunyai kapasitas mulai dari beberapa piko Farad sampai dengan
ratusan Kilopiko Farad (KpF). Dengan
tegangan kerja maksimal 25 volt sampai 100 volt, tetapi ada juga yang sampai
ribuan volt.
Gambar 1. kapasitor keramik
Cara
membaca nilai kapasitor Keramik :
Contoh misal pada badannya tertulis = 203,
nilai kapasitasnya = 20.000 pF
= 20 KpF =0,02 μF.
Jika pada badannya tertulis = 502, nilai
kapasitasnya = 5.000 pF = 5 KpF
= 0,005 μF
Gambar 2. membaca nilai kapasitor
b. Kondensator Polyester
Pada
dasarnya sama saja dengan kondensator keramik begitu juga cara menghitung
nilainya. Bentuknya persegi empat seperti permen. Biasanya mempunyai warna
merah, hijau, coklat dan sebagainya.
Gambar
3. kapasitor polyester
c. Kondensator Kertas
Kondensator kertas ini sering disebut juga kondensator padder.
Misal pada radio dipasang seri dari spul osilator ke variabel condensator.
Nilai kapasitas yang dipakai pada sirkuit oscilator antara lain:
·
Kapasitas 200 pF - 500 pF untuk daerah gelombang
menengah (Medium Wave / MW) = 190
meter - 500 meter.
·
Kapasitas 1.000 pF - 2.200 pF untuk daerah
gelombang pendek (Short Wave / SW)
SW 1 = 40 meter - 130 meter.
·
Kapasitas 2.700 pF - 6.800 pF untuk daerah
gelombang SW 1, 2, 3 dan 4, = 13 meter - 49 meter.
Gambar 4. kapasitor kertas
2. Kondensator elektrolit (Electrolite Condenser = Elco)
Kondensator
elektrolit atau Electrolytic Condenser (Elco) adalah
kondensator yang biasanya berbentuk tabung, mempunyai dua kutub kaki
berpolaritas positif dan negatif, ditandai oleh kaki yang panjang positif
sedangkan yang pendek negatif atau yang dekat tanda minus ( - ) adalah kaki negatif. Nilai kapasitasnya dari 0,47 μF (mikroFarad) sampai ribuan mikroFarad
dengan voltase kerja dari beberapa volt hingga ribuan volt.
Gambar 5. kondensator elektrolit
Selain kondensator elektrolit (Elco)
yang mempunyai polaritas, ada juga kondensator jenis elco yang berpolaritas
yaitu kondensator solid tantalum.dan ada Elco yang Non Polaritas pada
kakinya tidak ada kutub (+) dan (-)
Gambar 6. kondensator solid tantalum
Gambar 7. elco non
polar
Kerusakan umum pada kondensator elektrolit di antaranya
adalah :
- Kering (kapasitasnya berubah)
- Konsleting
- Meledak, yang dikarenakan salah dalam pemberian tegangan positif dan negatifnya, jika batas maksimum voltase dilampaui juga bisa meledak.
3. Kondensator Tidak Tetap (Variabel dan Trimmer)
Kondensator variabel dan trimmer adalah jenis kondensator yang
kapasitasnya bisa diubah-ubah. Kondensator ini dapat berubah kapasitasnya
karena secara fisik mempunyai poros yang dapat diputar dengan menggunakan
obeng.
Gambar 8. kondensator variabel
Kondensator variabel (Varco)
terbuat dari logam, mempunyai kapasitas maksimum sekitar 100 pF (pikoFarad) sampai 500 pF (100pF = 0.0001μF). Kondensator
variabel dengan spul antena dan spul osilator berfungsi sebagai pemilih
gelombang frekuensi tertentu yang akan ditangkap.
Gambar 9. symbol kondensator variable
Sedangkan kondensator
trimer dipasang paralel dengan variabel kondensator berfungsi untuk
menepatkan pemilihan gelombang frekuensi tersebut.Kondensator trimer mempunyai
kapasitas dibawah 100 pF (pikoFarad).
Gambar 10. symbol kondensator trimer
Resisitor
merupakan salah satu komponen elektronika yang bersifat pasif dimana
komponen ini tidak membutuhan arus listrik untuk berkerja. Resisitor
memiliki sifat menghambat arus listrik dan resistor sendiri memiliki
nilai besaran hambatan yaitu ohm dan dituliskan dengan simbol Ω.
Resistor disimbulkan dengan huruf R. dan mempunyai satuan ohm, resistor ditemukan pada tahun 1787 oleh seorang ahli fisika yang bernama George Ohm dari bangsa jerman.
Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai hukum Ohm:
Simbol Resistor
Resistor banyak sekali kegunaanya dalam rangkaian elektronika, misalnya :
Jenis-jenis resistor
Dilihat dari fungsinya, resistor dapat dibagi menjadi :
A. MENGUKUR / MENGETAHUI NILAI RESISTOR
1. Metode melihat warna (gelang) pada fisik resistor
Dalam menentukan nilai hambtan sebuah resistor, cara yang paling gampang dan banyak digunakan adalah dengan melihat dari pada warna gelang yang terdapat pada fisik resistor
Mungkin
pengetahun ini terbilang sudah sering didengar, karena memang menjadi
pelajaran dasar pada orang-orang yang bergelut di duni elektronika.
Namun untuk pemula atau yang memang memerlukan data, tidak ada
salahnyakan untuk diberikan pengetahuan ini. Sebelum membaca nilai
hambatan resistor, kita lihat tabel di bawah ini.
Kita mengetahui resistr memliki 4-5 gelang/cincin warna, setelah melihat tabel diatas.. maka kita bisa menghitung dengan menggunakan cara / rumus sebagai berikut :
I . Resistor 4 cincin / gelang
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = faktor kali
Cincin 1 = toleransi
CONTOH :
cincin 1 = cokelat = 1 (nilai)
cincin 2 = hijau = 5 (nilai)
cincin 3 = merah = 100 (faktor kali)
cincin 4 = emas = 5% (toleransi)
Nilai resistor, 15*100 = 1500 ohm atau 1.5 K ohm
Dengan toleransi +/- 1500*5% = 75 ohm
Maka, Nilai resistor di samping antara 1425 - 1575 ohm.
II . Reistor 5 cincin / gelang
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = faktor kali
Cincin 1 = toleransi
CONTOH :
cincin 1 = cokelat = 1 (nilai)
cincin 2 = hitam = 0 (nilai)
cincin 3 = hitam = 0 (nilai)
cincin 4 = cokelat = 10 (faktor kali)
cincin 5 = cokelat = 1% (toleransi)
Nilai resistor, 100*10 = 1000 ohm atau 1 K ohm
Dengan toleransi +/- 1000*1% = 10 ohm
Maka, Nilai resistor di samping antara 990 - 1010 ohm.
Nah, gimana mudah kan membaca nilai resistor. Nanti kedepannya untuk memperlancar membaca, daftar tabel sebaiknya di ingat. Sehingga waktu dibutuhkan membaca nilai resistor, tidak perlu buka-buka buku atau online lagi... :)
2. Menggunakan Alat : Avo Meter
Jika diatas dilakukan cara manual, maka berikutnya adalah mengukur nilai resistor menggunakan alat bantu AVO METER. hal ini diperlukan, jika memang kita buth cepat dan tidak hafal tabel nilai resistor atau memang ada kondisi tertentu dimana cincin tidak di terlihat jelas warnanya / nilainya.
Secara prinsip penggunaan AVO Meter ini mudah saja, pada kali ini dijelaskan untuk penggunaan pengukuran resistor.
Sebelumnya pastika Avo Meter sudah terKalibrasi dengan baik (untuk penggunaan AVO meter yang benar Akan diposting di " AVO METER : Mengenal peralatan kerja Elektronika 1 "
- Putar selektor, ke arah ohm meter dan pilih range nya. x1 (untuk pilihan nilai yang ditampilkan pada jarum sesuai dengan angkanya) x10 (hasil yang muncul pada jarum, dikali dengan 10) x1000 (hasil yang muncul pada jarum di kali 1000).
- Sentuhkan kedua terminal (+) dan (-) ke 2 kaki dari resistor.
Contoh :
Untuk melihat contoh disamping. Range selektro di tempatkan pada ohm x 10.
Sedangkan hasil pembacaan nilai resistor yang tertera ada 22.
karena di set di posisi x 10, maka hasil 22ohm di kali 10. Dana HASILNYA nilai resistor adalah 220 ohm.
3. Menggunakan Software : Free SOFTWARE PEMBACA NILAI RESISTOR,
Untuk penggunaan Software ini, caranya mudah, langsung memasukkan warna - warna yang diinginkan. Maka secara otomatis pada layar akan muncul nilai dari resistor yangs sedang sobat hitung tersebut. (UNTUK PRAKTIK, LANGSUNG DI DOWNLOAD AJA)* file berukuran kecil.
B. TIPS MEMBACA NILAI RESISTOR SECARA CEPAT
Nah pada bab ini, akan coba saya bagikan trik bagaimana menentukan/mengetahui nilai Resistor secara cepat, yang mungkin didapatkan dari berbagai pengalaman yang ada.
Untuk Hambatan / Resistor 4 gelang
1. Untuk nilai R kurang dari 10 ohm gelang ke 3 warnanya emas
2. Untuk nilai R kurang dari 100 ohm gelang ke 3 warnanya hitam
3. Untuk nilai R kurang dari 1K ohm gelang ke 3 warnanya cokelat
4. Untuk nilai R kurang dari 10K ohm gelang ke 3 warnanya merah
5. Untuk nilai R kurang dari 100K ohm gelang ke 3 warnanya orange
6. Untuk nilai R kurang dari 1M ohm gelang ke 3 warnanya kuning
7. Untuk nilai R kurang dari 10M ohm gelang ke 3 warnanya hijau
8. Untuk nilai R kurang dari 100M ohm gelang ke 3 warnanya biru
Untuk Hambatan / Resistor 5 gelang
1. Untuk nilai R kurang dari 10 ohm gelang ke 4 warnanya perak
2. Untuk nilai R kurang dari 100 ohm gelang ke 4 warnanya emas
3. Untuk nilai R kurang dari 1K ohm gelang ke 4 warnanya hitam
4. Untuk nilai R kurang dari 10K ohm gelang ke 4 warnanya cokelat
5. Untuk nilai R kurang dari 100K ohm gelang ke 4 warnanya merah
6. Untuk nilai R kurang dari 1M ohm gelang ke 4 warnanya orange
7. Untuk nilai R kurang dari 10M ohm gelang ke 4 warnanya kuning
8. Untuk nilai R kurang dari 100M ohm gelang ke 4 warnanya hijau 9. Untuk nilai R kurang dari 1000M ohm gelang ke 4 warnanya biru
C. MENCARI NILAI RESISTOR PENGGANTI
Dalam aktivitas / hoby kita merangcang suatu rangkaian elektronik dan hasil hitungan resistansi (nilai hambatan resistor) yang kita dapatkan nilainya tidak ada di pasaran. Maka mau tidak mau kita harus menggantinya dengan kombinasi beberapa resistor sekaligus.
Nah untuk mengetahui bagaimana "Rumus" dalam penggantian, maka dapat dilakukan sebagai berikut :
a) Resistor Hubungan Seri
Rumus : Rs (Total) = R1+R2+R3+...+Rn.
Pada Hubungan Seri ini, akan didapatkan nilai resistor yang bertambah dari nilai masing-masing resistor. jadi misal kita membutuhkan resistor 3K dan secara kebetulan kita tidak ada stock atau memang di pasaran tidak ada, maka kita dapat menghubungkan secara seri 3 resistor yang masing-masing memiliki nilai 1K.
Selain keperluan diatas, hubungan seri ini dimaksudkan untuk mendapatkan nilai Resistor yang besar dengan kemampuan daya (Rating) yang tetap.
CONTOH :
Berapa Rs dan Daya dari beberapa resistor di bahwa ini ?
R1 = 10 ohm; 0,5 watt Rs = R1+R2+R3
R2 = 20 ohm; 0,5 watt = 10+20+30
R3 = 30 ohm; 0,5 watt = 60 ohm, sedangkan daya tetap 0.5 watt
b) Resistor Hubungan Pararel
Rumus : Rp = 1 = 1 + 1 + 1 + .....+ 1
Rp R1 R2 R3 Rn
Jika pada hubungan Seri (diatas) ditujukan untuk menambah nilai resistansi, maka sebaliknya pada penggunaan hubungan pararel pada Resistor adalah bertujuan untuk memperkecil nilai dari hambatan total.
Dan pada hubungan pararel ini, selain nilai hambatan total yang semakin mengecil, namun dengan kemampuan daya (ratig) yang besar.
CONTOH :
Berapa Rs dan Daya dari beberapa resistor di bahwa ini ?
R1 = 10 ohm; 0,5 watt 1 = 1 + 1 + 1
R2 = 20 ohm; 0,5 watt Rp R1 R2 R3
R3 = 30 ohm; 0,5 watt = 1 + 1 + 1
10 20 30
= 6 + 3 + 2 = 11
60 60
Rp = 60 ohm = 5 5 ohm dan berdaya 1,5 watt
11 11
D. KERUSAKAN YANG TERJADI PADA RESISTOR
Sudahlah wajar dan normal, apabila benda - benda didunia ini mengalami kerusakan karena pada dasarnya memang tidak ada yang abadi. Entah karena kesalahan dalam penggunaan atau memang karena fakto usia.
Berikut biasanya kerusakan - kerusakan yang kerap terjadi pada komponen Resistor.
Diatas adalah beberapa contoh fisik resistor yang sudah rusak. Umumnya kerusakan terjadi karena daya yang melalui resistor terlalu besar, sehingga menyebabkan resistor menimbulkan efek panas yang berlebihan. tak jarang saat dipegang panas, dan pada kejadian tertentu, sampai ada yang hangus terbakar. Sebagai saran nantinya tentukan daya yang di butuhkan dalam melewati resisto2 resistor tersebut nantinya, dengan memakain 1/2, 1, sampai ada yg 4 watt. Tentunya semakin besar yang digunakan secara bentuk fisik juga semakin besar.
Dampak yang di timbulkan, adalah selain yang pastinya nilai resistansinya berubah (sudah tidak pada nilai hambatan yang di harapkan) juga ada yang short atau bahkan putus sama sekali. Untuk mengenathui dengan pasti, mungkin anda bisa menggunakan AVO Meter untuk melakukan pemeriksaan terhadap komponen apakah dalam keadaan nila yang seharusnya atau tidak bahkan ada kemungkinan terjadi short (hubungan singkat) / tidak ada hambatan sama sekali.
3. RESISTOR
Resistor disimbulkan dengan huruf R. dan mempunyai satuan ohm, resistor ditemukan pada tahun 1787 oleh seorang ahli fisika yang bernama George Ohm dari bangsa jerman.
Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai hukum Ohm:
Simbol Resistor
Resistor banyak sekali kegunaanya dalam rangkaian elektronika, misalnya :
- Sebagai penghambat arus listrik
- Sebagai pembagi tegangan
- Sebagai pengaman arus berlebih
- Sebagai pembagi arus
- Dll tergantung disain komponenJenis-jenis Resistor
Dilihat dari fungsinya, resistor dapat dibagi menjadi :
1. Resistor Tetap
Resistor tetap merupakan resistor yang mempunyai nilai hambatan tetap. Biasanya terbuat dari karbon, kawat atau panduan logam. Pada resistor tetap nilai Resistansi biasanya ditentukan dengan kode warna sebagai berikut.
Yang termasuk resistor jenis ini adalah :
a. Resistor kawat
Resistor kawat adalah jenis resistor generasi pertama yang lahir pada saat rangkaian elektronika masih menggunakan tabung hampa (vacuum tube). Bentuknya bervariasi dan memiliki ukuran yang cukup besar. Resistor kawat ini biasanya banyak dipergunakan dalam rangkaian power karena memiliki resistansi yang tinggi dan tahan terhadap panas yang tinggi. Jenis lainnya yang masih dipakai sampai sekarang adalah jenis resistor dengan lilitan kawat yang dililitkan pada bahan keramik, kemudian dilapisi dengan bahan semen. Rating daya yang tersedia untuk resistor jenis ini adalah dalam ukuran 1 watt, 2 watt, 5 watt, dan 10 watt. Ilustrasi dari resistor kawat dapat dilihat pada gambar di samping.
b. Resistor batang karbon (arang)
Pada awalnya, resistor ini dibuat dari bahan karbon kasar yang diberi lilitan kawat yang kemudian diberi tanda dengan kode warna berbentuk gelang dan pembacaannya dapat dilihat pada tabel kode warna. Jenis resistor ini juga merupakan jenis resistor generasi awal setelah adanya resistor kawat. Sekarang sudah jarang untuk dipakai pada rangkaian – rangkaian elektronika. Bentuk dari resistor jenis ini dapat dilihat pada gambar di samping.
c. Resistor keramik atau porselin
Resistor ini terbuat dari keramik yang dilapisi dengan kaca tipis. Jenis resistor ini telah banyak digunakan dalam rangkaian elektronika saat ini karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
d. Reistor Film karbon
Resistor ini dibuat dari bahan karbon dan dilapisi dengan bahan film yang berfungsi sebagai pelindung terhadap pengaruh luar. Nilai resistansinya dicantumkan dalam bentuk kode warna. Resistor ini juga sudah banyak digunakan dalam berbagai rangkaian elektronika karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Namun, untuk masalah ukuran fisik, resistor ini masih kalah jika dibandingkan dengan resistor keramik. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
e. Resistor film Metal
Resistor film metal dibuat dengan bentuk hampir menyerupai resistor film karbon. Resistor tahan terhadap perubahan temperatur. Resistor ini juga memiliki tingkat kepresisian yang tinggi karena nilai toleransi yang tercantum pada resistor ini sangatlah kecil, biasanya sekitar 1% atau 5%. resistor film metal ini memiliki 5 buah gelang warna, bahkan ada yang 6 buah gelang warna. Sedangkan, resistor film karbon hanya memiliki 4 buah gelang warna. Resistor film metal ini sangat cocok digunakan dalam rangkaian – rangkaian yang memerlukan tingkat ketelitian yang tinggi, seperti alat ukur. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
2. Resistor Variabel
Resistor variabel (variable resistor atau varistor) adalah resistor yang nilai tahanannya dapat berubah atau dapat diubah.
Ada bermacam-macam resistor variabel antara lain :
Resistor tetap merupakan resistor yang mempunyai nilai hambatan tetap. Biasanya terbuat dari karbon, kawat atau panduan logam. Pada resistor tetap nilai Resistansi biasanya ditentukan dengan kode warna sebagai berikut.
Yang termasuk resistor jenis ini adalah :
a. Resistor kawat
Resistor kawat adalah jenis resistor generasi pertama yang lahir pada saat rangkaian elektronika masih menggunakan tabung hampa (vacuum tube). Bentuknya bervariasi dan memiliki ukuran yang cukup besar. Resistor kawat ini biasanya banyak dipergunakan dalam rangkaian power karena memiliki resistansi yang tinggi dan tahan terhadap panas yang tinggi. Jenis lainnya yang masih dipakai sampai sekarang adalah jenis resistor dengan lilitan kawat yang dililitkan pada bahan keramik, kemudian dilapisi dengan bahan semen. Rating daya yang tersedia untuk resistor jenis ini adalah dalam ukuran 1 watt, 2 watt, 5 watt, dan 10 watt. Ilustrasi dari resistor kawat dapat dilihat pada gambar di samping.
b. Resistor batang karbon (arang)
Pada awalnya, resistor ini dibuat dari bahan karbon kasar yang diberi lilitan kawat yang kemudian diberi tanda dengan kode warna berbentuk gelang dan pembacaannya dapat dilihat pada tabel kode warna. Jenis resistor ini juga merupakan jenis resistor generasi awal setelah adanya resistor kawat. Sekarang sudah jarang untuk dipakai pada rangkaian – rangkaian elektronika. Bentuk dari resistor jenis ini dapat dilihat pada gambar di samping.
c. Resistor keramik atau porselin
Resistor ini terbuat dari keramik yang dilapisi dengan kaca tipis. Jenis resistor ini telah banyak digunakan dalam rangkaian elektronika saat ini karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
d. Reistor Film karbon
Resistor ini dibuat dari bahan karbon dan dilapisi dengan bahan film yang berfungsi sebagai pelindung terhadap pengaruh luar. Nilai resistansinya dicantumkan dalam bentuk kode warna. Resistor ini juga sudah banyak digunakan dalam berbagai rangkaian elektronika karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Namun, untuk masalah ukuran fisik, resistor ini masih kalah jika dibandingkan dengan resistor keramik. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
e. Resistor film Metal
Resistor film metal dibuat dengan bentuk hampir menyerupai resistor film karbon. Resistor tahan terhadap perubahan temperatur. Resistor ini juga memiliki tingkat kepresisian yang tinggi karena nilai toleransi yang tercantum pada resistor ini sangatlah kecil, biasanya sekitar 1% atau 5%. resistor film metal ini memiliki 5 buah gelang warna, bahkan ada yang 6 buah gelang warna. Sedangkan, resistor film karbon hanya memiliki 4 buah gelang warna. Resistor film metal ini sangat cocok digunakan dalam rangkaian – rangkaian yang memerlukan tingkat ketelitian yang tinggi, seperti alat ukur. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
2. Resistor Variabel
Resistor variabel (variable resistor atau varistor) adalah resistor yang nilai tahanannya dapat berubah atau dapat diubah.
Ada bermacam-macam resistor variabel antara lain :
a. Potensiometer
Adalah resistor tiga terminal yang nilai tahanannya dapat diubah dengan cara menggeser (untuk potensio jenis geser) atau memutar (untuk potensio jenis putar) tuasnya.
b.Trimpot
Adalah potensiometer yang cara mengubah nilai tahanannya dengan cara mentrim dengan menggunakan obeng trim.
c. PTC (Positif Temperature Control)
PTC termasuk jenis thermistor, yaitu resistor yang nilai tahanannya dipengaruhi oleh suhu. Nilai hambatan PTC saat dingin adalah sangat rendah, tetapi saat suhu PTC naik maka nilai hambatannya juga ikut naik.
d. NTC (Negative Temperature Control)
NTC juga termasuk jenis thermistor, yaitu resistor yang nilai tahanannya dipengaruhi oleh suhu, tetapi NTC kebalikan dari PTC, dimana nilai tahanan NTC saat dingin sangat tinggi, tetapi saat suhu NTC semakin naik, maka nilai tahanannya akan semakin mengecil bahkan nol.
e. LDR (Light Depending Resistor)
LDR adalah merupakan resistor peka cahaya atau biasa disebut dengan fotoresistor, dimana nilai resistansinya akan menurun jika ada penambahan intensitas cahaya yang mengenainya.
f. VDR (Voltage Dependent Resistor)
VDR adalah singkatan dari Voltage Dependent Resistor, yaitu sebuah resistor tidak tetap yang nilai resistansinya akan berubah tergantung dari tegangan yang diterimanya. Sifat dari VDR adalah semakin besar tegangan yang diterima, maka nilai tahanannya akan semakin mengecil, sehingga arus yang melaluinya akan semakin besar. Dengan adanya sifat tersebut maka VDR akan sangat cocok digunakan sebagai stabilizer bagi komponen transistor.
Adalah resistor tiga terminal yang nilai tahanannya dapat diubah dengan cara menggeser (untuk potensio jenis geser) atau memutar (untuk potensio jenis putar) tuasnya.
b.Trimpot
Adalah potensiometer yang cara mengubah nilai tahanannya dengan cara mentrim dengan menggunakan obeng trim.
c. PTC (Positif Temperature Control)
PTC termasuk jenis thermistor, yaitu resistor yang nilai tahanannya dipengaruhi oleh suhu. Nilai hambatan PTC saat dingin adalah sangat rendah, tetapi saat suhu PTC naik maka nilai hambatannya juga ikut naik.
NTC juga termasuk jenis thermistor, yaitu resistor yang nilai tahanannya dipengaruhi oleh suhu, tetapi NTC kebalikan dari PTC, dimana nilai tahanan NTC saat dingin sangat tinggi, tetapi saat suhu NTC semakin naik, maka nilai tahanannya akan semakin mengecil bahkan nol.
e. LDR (Light Depending Resistor)
LDR adalah merupakan resistor peka cahaya atau biasa disebut dengan fotoresistor, dimana nilai resistansinya akan menurun jika ada penambahan intensitas cahaya yang mengenainya.
f. VDR (Voltage Dependent Resistor)
VDR adalah singkatan dari Voltage Dependent Resistor, yaitu sebuah resistor tidak tetap yang nilai resistansinya akan berubah tergantung dari tegangan yang diterimanya. Sifat dari VDR adalah semakin besar tegangan yang diterima, maka nilai tahanannya akan semakin mengecil, sehingga arus yang melaluinya akan semakin besar. Dengan adanya sifat tersebut maka VDR akan sangat cocok digunakan sebagai stabilizer bagi komponen transistor.
A. MENGUKUR / MENGETAHUI NILAI RESISTOR
1. Metode melihat warna (gelang) pada fisik resistor
Dalam menentukan nilai hambtan sebuah resistor, cara yang paling gampang dan banyak digunakan adalah dengan melihat dari pada warna gelang yang terdapat pada fisik resistor
Bentuk Fisik - Cincin / Gelang Warna |
Tabel nilai Resistor |
Kita mengetahui resistr memliki 4-5 gelang/cincin warna, setelah melihat tabel diatas.. maka kita bisa menghitung dengan menggunakan cara / rumus sebagai berikut :
I . Resistor 4 cincin / gelang
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = faktor kali
Cincin 1 = toleransi
CONTOH :
Resistor 4 gelang |
cincin 2 = hijau = 5 (nilai)
cincin 3 = merah = 100 (faktor kali)
cincin 4 = emas = 5% (toleransi)
Nilai resistor, 15*100 = 1500 ohm atau 1.5 K ohm
Dengan toleransi +/- 1500*5% = 75 ohm
Maka, Nilai resistor di samping antara 1425 - 1575 ohm.
II . Reistor 5 cincin / gelang
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = nilai
Cincin 1 = faktor kali
Cincin 1 = toleransi
CONTOH :
Resistor 5 Gelang |
cincin 1 = cokelat = 1 (nilai)
cincin 2 = hitam = 0 (nilai)
cincin 3 = hitam = 0 (nilai)
cincin 4 = cokelat = 10 (faktor kali)
cincin 5 = cokelat = 1% (toleransi)
Nilai resistor, 100*10 = 1000 ohm atau 1 K ohm
Dengan toleransi +/- 1000*1% = 10 ohm
Maka, Nilai resistor di samping antara 990 - 1010 ohm.
Nah, gimana mudah kan membaca nilai resistor. Nanti kedepannya untuk memperlancar membaca, daftar tabel sebaiknya di ingat. Sehingga waktu dibutuhkan membaca nilai resistor, tidak perlu buka-buka buku atau online lagi... :)
2. Menggunakan Alat : Avo Meter
Jika diatas dilakukan cara manual, maka berikutnya adalah mengukur nilai resistor menggunakan alat bantu AVO METER. hal ini diperlukan, jika memang kita buth cepat dan tidak hafal tabel nilai resistor atau memang ada kondisi tertentu dimana cincin tidak di terlihat jelas warnanya / nilainya.
Secara prinsip penggunaan AVO Meter ini mudah saja, pada kali ini dijelaskan untuk penggunaan pengukuran resistor.
Sebelumnya pastika Avo Meter sudah terKalibrasi dengan baik (untuk penggunaan AVO meter yang benar Akan diposting di " AVO METER : Mengenal peralatan kerja Elektronika 1 "
- Putar selektor, ke arah ohm meter dan pilih range nya. x1 (untuk pilihan nilai yang ditampilkan pada jarum sesuai dengan angkanya) x10 (hasil yang muncul pada jarum, dikali dengan 10) x1000 (hasil yang muncul pada jarum di kali 1000).
- Sentuhkan kedua terminal (+) dan (-) ke 2 kaki dari resistor.
Contoh :
Untuk melihat contoh disamping. Range selektro di tempatkan pada ohm x 10.
Sedangkan hasil pembacaan nilai resistor yang tertera ada 22.
karena di set di posisi x 10, maka hasil 22ohm di kali 10. Dana HASILNYA nilai resistor adalah 220 ohm.
3. Menggunakan Software : Free SOFTWARE PEMBACA NILAI RESISTOR,
Untuk penggunaan Software ini, caranya mudah, langsung memasukkan warna - warna yang diinginkan. Maka secara otomatis pada layar akan muncul nilai dari resistor yangs sedang sobat hitung tersebut. (UNTUK PRAKTIK, LANGSUNG DI DOWNLOAD AJA)* file berukuran kecil.
B. TIPS MEMBACA NILAI RESISTOR SECARA CEPAT
Nah pada bab ini, akan coba saya bagikan trik bagaimana menentukan/mengetahui nilai Resistor secara cepat, yang mungkin didapatkan dari berbagai pengalaman yang ada.
Untuk Hambatan / Resistor 4 gelang
1. Untuk nilai R kurang dari 10 ohm gelang ke 3 warnanya emas
2. Untuk nilai R kurang dari 100 ohm gelang ke 3 warnanya hitam
3. Untuk nilai R kurang dari 1K ohm gelang ke 3 warnanya cokelat
4. Untuk nilai R kurang dari 10K ohm gelang ke 3 warnanya merah
5. Untuk nilai R kurang dari 100K ohm gelang ke 3 warnanya orange
6. Untuk nilai R kurang dari 1M ohm gelang ke 3 warnanya kuning
7. Untuk nilai R kurang dari 10M ohm gelang ke 3 warnanya hijau
8. Untuk nilai R kurang dari 100M ohm gelang ke 3 warnanya biru
Untuk Hambatan / Resistor 5 gelang
1. Untuk nilai R kurang dari 10 ohm gelang ke 4 warnanya perak
2. Untuk nilai R kurang dari 100 ohm gelang ke 4 warnanya emas
3. Untuk nilai R kurang dari 1K ohm gelang ke 4 warnanya hitam
4. Untuk nilai R kurang dari 10K ohm gelang ke 4 warnanya cokelat
5. Untuk nilai R kurang dari 100K ohm gelang ke 4 warnanya merah
6. Untuk nilai R kurang dari 1M ohm gelang ke 4 warnanya orange
7. Untuk nilai R kurang dari 10M ohm gelang ke 4 warnanya kuning
8. Untuk nilai R kurang dari 100M ohm gelang ke 4 warnanya hijau 9. Untuk nilai R kurang dari 1000M ohm gelang ke 4 warnanya biru
C. MENCARI NILAI RESISTOR PENGGANTI
Dalam aktivitas / hoby kita merangcang suatu rangkaian elektronik dan hasil hitungan resistansi (nilai hambatan resistor) yang kita dapatkan nilainya tidak ada di pasaran. Maka mau tidak mau kita harus menggantinya dengan kombinasi beberapa resistor sekaligus.
Nah untuk mengetahui bagaimana "Rumus" dalam penggantian, maka dapat dilakukan sebagai berikut :
a) Resistor Hubungan Seri
Hubungan Seri |
Pada Hubungan Seri ini, akan didapatkan nilai resistor yang bertambah dari nilai masing-masing resistor. jadi misal kita membutuhkan resistor 3K dan secara kebetulan kita tidak ada stock atau memang di pasaran tidak ada, maka kita dapat menghubungkan secara seri 3 resistor yang masing-masing memiliki nilai 1K.
Selain keperluan diatas, hubungan seri ini dimaksudkan untuk mendapatkan nilai Resistor yang besar dengan kemampuan daya (Rating) yang tetap.
CONTOH :
Berapa Rs dan Daya dari beberapa resistor di bahwa ini ?
R1 = 10 ohm; 0,5 watt Rs = R1+R2+R3
R2 = 20 ohm; 0,5 watt = 10+20+30
R3 = 30 ohm; 0,5 watt = 60 ohm, sedangkan daya tetap 0.5 watt
b) Resistor Hubungan Pararel
Hubungan Pararel |
Rp R1 R2 R3 Rn
Jika pada hubungan Seri (diatas) ditujukan untuk menambah nilai resistansi, maka sebaliknya pada penggunaan hubungan pararel pada Resistor adalah bertujuan untuk memperkecil nilai dari hambatan total.
Dan pada hubungan pararel ini, selain nilai hambatan total yang semakin mengecil, namun dengan kemampuan daya (ratig) yang besar.
CONTOH :
Berapa Rs dan Daya dari beberapa resistor di bahwa ini ?
R1 = 10 ohm; 0,5 watt 1 = 1 + 1 + 1
R2 = 20 ohm; 0,5 watt Rp R1 R2 R3
R3 = 30 ohm; 0,5 watt = 1 + 1 + 1
10 20 30
= 6 + 3 + 2 = 11
60 60
Rp = 60 ohm = 5 5 ohm dan berdaya 1,5 watt
11 11
D. KERUSAKAN YANG TERJADI PADA RESISTOR
Sudahlah wajar dan normal, apabila benda - benda didunia ini mengalami kerusakan karena pada dasarnya memang tidak ada yang abadi. Entah karena kesalahan dalam penggunaan atau memang karena fakto usia.
Berikut biasanya kerusakan - kerusakan yang kerap terjadi pada komponen Resistor.
Resistor Terbakar |
Resistor Terbakar |
Diatas adalah beberapa contoh fisik resistor yang sudah rusak. Umumnya kerusakan terjadi karena daya yang melalui resistor terlalu besar, sehingga menyebabkan resistor menimbulkan efek panas yang berlebihan. tak jarang saat dipegang panas, dan pada kejadian tertentu, sampai ada yang hangus terbakar. Sebagai saran nantinya tentukan daya yang di butuhkan dalam melewati resisto2 resistor tersebut nantinya, dengan memakain 1/2, 1, sampai ada yg 4 watt. Tentunya semakin besar yang digunakan secara bentuk fisik juga semakin besar.
Dampak yang di timbulkan, adalah selain yang pastinya nilai resistansinya berubah (sudah tidak pada nilai hambatan yang di harapkan) juga ada yang short atau bahkan putus sama sekali. Untuk mengenathui dengan pasti, mungkin anda bisa menggunakan AVO Meter untuk melakukan pemeriksaan terhadap komponen apakah dalam keadaan nila yang seharusnya atau tidak bahkan ada kemungkinan terjadi short (hubungan singkat) / tidak ada hambatan sama sekali.
Cara Menguji Komponen Resistor Masih Baik atau Tidak
Walaupun
komponen ini tidak memiliki kutub negatif dan positif tetapi dengan
multimeter kita akan menguji kualitasnya. Tidak menutup kemungkinan
adanya kerusakan yang disebabkan oleh beberapa faktor, salah satu
diantaranya karena terbakar/korsleting karena tidak tahan menahan arus
yang lebih besar dari nilainya.
Untuk
mengujinya dengan multimeter kita boleh membolak-balik kaki resistor
ataupun sebaliknya membolak-balik colok (+) dan colok (-).
Langkah-langkah pemeriksaan resistor:
1. Memutar saklar sampai pada posisi R x Ohm.
2.
Kalibrasi dengan menghubungkan colok (+) dan colok (-). Kemudian
memutar penyetel sampai jarum menunjuk pada angka nol (0). Atau putar
control adjusment untuk menyesuaikan.
3. Setelah itu kita hubungkan pencolok (+) pada salah satu kaki resistor, begitu pula colok (-) pada kaki yang lain.
4.
Perhatikan jarum penunjuk. Apakah ia bergerak penuh atau sebaliknya
jika bergerak dan tak kembali berarti komponen masih baik. Bila
sebaliknya jarum penunjuk skala tidak bergerak berarti resistor rusak.
5.
Komponen resistor yang masih baik juga bisa dinilai dengan sama atau
tidak nilai komponen resistor yang tertera pada gelang-gelang warnanya
dengan pengukuran melalui multimeter.
Tidak ada komentar:
Posting Komentar